Published: 1990 Received: August 04, 1988Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) E. A. Carlen, Conservative diffusions, Comm. Math. Phys., 94 (1984), 293-315. 2) E. A. Carlen, Existence and sample path properties of the diffusions in Nelson's stochastic mechanics, Lecture Notes in Math., 1158, Springer, 1984, pp. 25-51. 3) C. Dellacherie and P.A. Meyer, Probability and potential, North-Holland, Amsterdam, 1978. 4) C. Dellacherie and P.A. Meyer, Probability and potential B, North-Holland, Amsterdam, 1982. 5) S. Ito, Fundamental solution of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. 6) S. Ito, Functional analysis III, Kisosugaku, Iwanami shyoten, Tokyo, 1978 (in Japanese). 7) Y. Kannai, Existence and smoothness for certain degenerate parabolic boundary value problems, Osaka J. Math., 25 (1988), 1-18. 8) P. A. Meyer and W. A. Zheng, Construction de processus de Nelson reversibles, Lecture Notes in Math., 1123, Springer, 1983/1984, pp. 12-26. 9) M. Nagasawa, Transformation of diffusion and Shrödinger processes, Report at UCSD in 1987. 10) E. Nelson, Derivation of Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079-1085. 11) D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Commun. Pure Appl. Math., 24 (1971), 147-225. 12) S. Watanabe, Stochastic differential equations, Sangyo-toshyo, Tokyo, 1975 (in Japanese).
Right : [1] E. A. Carlen, Conservative diffusions, Comm. Math. Phys., 94 (1984), 293-315. [2] E. A. Carlen, Existence and sample path properties of the diffusions in Nelson's stochastic mechanics, Lecture Notes in Math., 1158, Springer, 1984, pp. 25-51. [3] C. Dellacherie and P. A. Meyer, Probability and potential, North-Holland, Amsterdam, 1978. [4] C. Dellacherie and P. A. Meyer, Probability and potential B, North-Holland, Amsterdam, 1982. [5] S. Itô, Fundamental solution of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. [6] S. Itô, Functional analysis III, Kisosugaku, Iwanami shyoten, Tokyo, 1978 (in Japanese). [7] Y. Kannai, Existence and smoothness for certain degenerate parabolic boundary value problems, Osaka J. Math., 25 (1988), 1-18. [8] P. A. Meyer and W. A. Zheng, Construction de processus de Nelson reversibles, Lecture Notes in Math., 1123, Springer, 1983/1984, pp. 12-26. [9] M. Nagasawa, Transformation of diffusion and Shrödinger processes, Report at UCSD in 1987. [10] E. Nelson, Derivation of Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079-1085. [11] D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Commun. Pure Appl. Math., 24 (1971), 147-225. [12] S. Watanabe, Stochastic differential equations, Sangyo-toshyo, Tokyo, 1975 (in Japanese).
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -