Published: 1990 Received: March 07, 1989Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : Yo MATSUBABA1) Right : Yo MATSUBARA1)
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. E. Baumgartner and A. D. Taylor, Saturation properties of ideals in generic extensions. I, Trans. Amer. Math. Soc., 270 (1982), 557-573. 2) M. Foreman, Potent axioms, Trans. Amer. Math. Soc., 86 (1986), 1-26. 3) M. Gitik, Nonsplitting subset of Pκ(κ+), J. Symbolic Logic, 50 (1985), 881-894. 4) D. Kueker, Countable approximations and Lowenheim-Skolem theorems, Ann. Math. Logic, 11 (1977), 57-103. 5) M. Magidor, private communication. 6) Y. Matsubara, Menas' conjecture and generic ultrapowers, Ann. Pure Appl. Logic, 36 (1987), 225-234. 7) Y. Matsubara, Splitting Pκλ into stationary subsets, J. Symbolic Logic, 53 (1988), 385-389. 8) T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic, 7 (1975), 327-359. 9) J. H. Silver, The consistency of the GCH with the existence of a measurable cardinal, in “Axiomatic Set Theory”. (D. Scott ed.), Proc. Sympos. Pure Math., 13 (1971), 383-390.
Right : [1] J. E. Baumgartner and A. D. Taylor, Saturation properties of ideals in generic extensions. I, Trans. Amer. Math. Soc., 270 (1982), 557-573. [2] M. Foreman, Potent axioms, Trans. Amer. Math. Soc., 86 (1986), 1-26. [3] M. Gitik, Nonsplitting subset of Pκ(κ+), J. Symbolic Logic, 50 (1985), 881-894. [4] D. Kueker, Countable approximations and Lowenheim-Skolem theorems, Ann. Math. Logic, 11 (1977), 57-103. [5] M. Magidor, private communication. [6] Y. Matsubara, Menas' conjecture and generic ultrapowers, Ann. Pure Appl. Logic, 36 (1987), 225-234. [7] Y. Matsubara, Splitting Pκλ into stationary subsets, J. Symbolic Logic, 53 (1988), 385-389. [8] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic, 7 (1975), 327-359. [9] J. H. Silver, The consistency of the GCH with the existence of a measurable cardinal, in “Axiomatic Set Theory”, (D. Scott ed.), Proc. Sympos. Pure Math., 13 (1971), 383-390.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -