Published: 1990 Received: April 05, 1989Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Backward Ito's formula for sections of a fibered manifold Right : Backward Itô's formula for sections of a fibered manifold
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) H. Akiyama, On Ito's formula for certain fields of geometric objects, J. Math. Soc. Japan, 39 (1987), 79-91. 2) H. Akiyama, Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds, Geometry of Manifolds (ed. by K. Shiohama), Academic Press, Boston, New York, London, 1989, pp. 3-27. 3) R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, London, 1964. 4) M. Ferraris, M. Francaviglia and C. Reina, A constructive approach to bundles of geometric objects on a differentiable manifold, J. Math. Phys., 24 (1983), 120-124. 5) M. Ferraris, M. Francaviglia and C. Reina, Sur les fibrés d'objets géométriques et leurs applications physiques, Ann. Inst. H. Poincaré Phys. Théor., 38 (1983), 371-383. 6) N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981. 7) N. Ikeda and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis and Applications (ed. by M.A. Pinsky), Adv. Probab. Related Topics, 7, Marcel Dekker, New York, 1984, pp. 179-198. 8) S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972. 9) S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Interscience, New York, 1963, 1969. 10) H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'Été de Probab, de Saint-Flour XII-1982 (ed. by P.L. Hennequin), Lecture Notes in Math., 1097, Springer, 1984, pp. 143-303. 11) S. Salvioli, On the theory of geometric objects, J. Duff. Geom., 7 (1972), 257-278. 12) K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1955.
Right : [1] H. Akiyama, On Itô's formula for certain fields of geometric objects, J. Math. Soc. Japan, 39 (1987), 79-91. [2] H. Akiyama, Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds, Geometry of Manifolds (ed. by K. Shiohama), Academic Press, Boston, New York, London, 1989, pp. 3-27. [3] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York, London, 1964. [4] M. Ferraris, M. Francaviglia and C. Reina, A constructive approach to bundles of geometric objects on a differentiable manifold, J. Math. Phys., 24 (1983), 120-124. [5] M. Ferraris, M. Francaviglia and C. Reina, Sur les fibrés d'objets géométriques et leurs applications physiques, Ann. Inst. H. Poincaré Phys. Théor., 38 (1983), 371-383. [6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981. [7] N. Ikeda and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis and Applications (ed. by M. A. Pinsky), Adv. Probab. Related Topics, 7, Marcel Dekker, New York, 1984, pp. 179-198. [8] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972. [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Interscience, New York, 1963, 1969. [10] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'Été de Probab, de Saint-Flour XII-1982 (ed. by P. L. Hennequin), Lecture Notes in Math., 1097, Springer, 1984, pp. 143-303. [11] S. Salvioli, On the theory of geometric objects, J. Duff. Geom., 7 (1972), 257-278. [12] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1955.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -