訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Backward Ito's formula for sections of a fibered manifold Right : Backward Itô's formula for sections of a fibered manifold
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) H. Akiyama, On Ito's formula for certain fields of geometric objects, J. Math. Soc. Japan, 39 (1987), 79-91. 2) H. Akiyama, Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds, Geometry of Manifolds (ed. by K. Shiohama), Academic Press, Boston, New York, London, 1989, pp. 3-27. 3) R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, London, 1964. 4) M. Ferraris, M. Francaviglia and C. Reina, A constructive approach to bundles of geometric objects on a differentiable manifold, J. Math. Phys., 24 (1983), 120-124. 5) M. Ferraris, M. Francaviglia and C. Reina, Sur les fibrés d'objets géométriques et leurs applications physiques, Ann. Inst. H. Poincaré Phys. Théor., 38 (1983), 371-383. 6) N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981. 7) N. Ikeda and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis and Applications (ed. by M.A. Pinsky), Adv. Probab. Related Topics, 7, Marcel Dekker, New York, 1984, pp. 179-198. 8) S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972. 9) S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Interscience, New York, 1963, 1969. 10) H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'Été de Probab, de Saint-Flour XII-1982 (ed. by P.L. Hennequin), Lecture Notes in Math., 1097, Springer, 1984, pp. 143-303. 11) S. Salvioli, On the theory of geometric objects, J. Duff. Geom., 7 (1972), 257-278. 12) K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1955.
Right : [1] H. Akiyama, On Itô's formula for certain fields of geometric objects, J. Math. Soc. Japan, 39 (1987), 79-91. [2] H. Akiyama, Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds, Geometry of Manifolds (ed. by K. Shiohama), Academic Press, Boston, New York, London, 1989, pp. 3-27. [3] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York, London, 1964. [4] M. Ferraris, M. Francaviglia and C. Reina, A constructive approach to bundles of geometric objects on a differentiable manifold, J. Math. Phys., 24 (1983), 120-124. [5] M. Ferraris, M. Francaviglia and C. Reina, Sur les fibrés d'objets géométriques et leurs applications physiques, Ann. Inst. H. Poincaré Phys. Théor., 38 (1983), 371-383. [6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981. [7] N. Ikeda and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis and Applications (ed. by M. A. Pinsky), Adv. Probab. Related Topics, 7, Marcel Dekker, New York, 1984, pp. 179-198. [8] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972. [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Interscience, New York, 1963, 1969. [10] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'Été de Probab, de Saint-Flour XII-1982 (ed. by P. L. Hennequin), Lecture Notes in Math., 1097, Springer, 1984, pp. 143-303. [11] S. Salvioli, On the theory of geometric objects, J. Duff. Geom., 7 (1972), 257-278. [12] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1955.