Published: 1991 Received: September 25, 1989Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : Br1) S. A. Broughton, On the topology of Polynomial Hypersurfaces, Proceedings of Symposia in Pure Mathematics, Arcata Singularities Conference, Am. Math. Soc., 40(1983). 167-178. Br2) S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 92 (1988), 217-241. H-L) H. V. Hà and D. T. Lê, Sur la topologie des polynômes complexes, Acta. Math. Vietnamica, 9 (1984), 21-32. H) M. W. Hirsch, Differential Topology, Graduate texts in mathematics, 33, 1976. Ko) A. G. Kouchnirenko, Polyedres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31. Mil) J. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, 1965. Mi2) J. Milnor, Construction of universal boundles II, Ann, of Math., 63 (1965), 430-436. Ne) A. Némethi, Théorie de Lefschetz pour les variétiés algebriques affines, C. R. Acad. Sci. Paris, 303, Serie I, no. 12, 1986. O1) M. Oka, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, Topology, 12 (1973), 19-32. O2) M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31, No. 3, (1979). O3) M. Oka, On the topology of Newton boundary II, J. Math. Soc. Japan, 32 (1980), 65-92. O4) M. Oka, On the topology of the New boundary III, J. Math. Soc. Japan, 34 (1982), 541-549. Sa1) K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan, 26 (1974), 714-721. Sa2) K. Sakamoto, Milnor fiberings and their characteristic Maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973. Se-T) M. Sebastiani and R. Thom, Un résultat sur la monodromie, Invent. Math., 13 (1971). Ve) J. L. Verdier, Stratificatiorns de Whitney et Theoreme de Bertini-Sard, Invent. Math., 36 (1976), 295-312.
Right : [Br1] S. A. Broughton, On the topology of Polynomial Hypersurfaces, Proceedings of Symposia in Pure Mathematics, Arcata Singularities Conference, Am. Math. Soc., 40 (1983). 167-178. [Br2] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 92 (1988), 217-241. [H-L] H. V. Hà and D. T. Lê, Sur la topologie des polynômes complexes, Acta. Math. Vietnamica, 9 (1984), 21-32. [H] M. W. Hirsch, Differential Topology, Graduate texts in mathematics, 33, 1976. [Ko] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31. [Mi1] J. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, 1965. [Mi2] J. Milnor, Construction of universal boundles II, Ann, of Math., 63 (1965), 430-436. [Ne] A. Némethi, Théorie de Lefschetz pour les variétiés algebriques affines, C. R. Acad. Sci. Paris, 303, Serie I, no. 12, 1986. [O1] M. Oka, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, Topology, 12 (1973), 19-32. [O2] M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31, No. 3, (1979). [O3] M. Oka, On the topology of Newton boundary II, J. Math. Soc. Japan, 32 (1980), 65-92. [O4] M. Oka, On the topology of the New boundary III, J. Math. Soc. Japan, 34 (1982), 541-549. [Sa1] K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan, 26 (1974), 714-721. [Sa2] K. Sakamoto, Milnor fiberings and their characteristic Maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973. [Se-T] M. Sebastiani and R. Thom, Un résultat sur la monodromie, Invent. Math., 13 (1971). [Ve] J. L. Verdier, Stratificatiorns de Whitney et Theoreme de Bertini-Sard, Invent. Math., 36 (1976), 295-312.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -