Published: 1991 Received: July 17, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : S. GOTO1), K. NISHIDA2), Y. SHIMODA3) Right : Shiro GOTO1), Koji NISHIDA2), Yasuhiro SHIMODA3)
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) N. Bourbaki, Commutative Algebra, Addison-Wesley Publishing Company, 1972. 2) L. Burch, Codimension and analytic spread, Proc. Camb. Phil. Soc., 72 (1972), 369-373. 3) R. C. Cowsik, Symbolic powers and the number of defining equations, Algebra and Its Applications, Lecture Notes in Pure and Appl. Math., 91 (1985), 13-14. 4) S. Eliahou, Symbolic powers of monomial curves, J. Algebra, 117 (1988) , 437-456, 5) S. Goto, M. Herrmann, K. Nishida and O. Villamayor, On the structure of Noetherian symbolic Rees algebras, Manuscripta Math., 67 (1990), 197-225. 6) S. Goto, K. Nishida and Y. Shimoda, The Gorensteinness of the symbolic blow-ups for certain space monomial curves, in preparation. 7) S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Lecture Notes in Pure and Appl. Math., 68(1982), 201-231. 8) S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30(1978), 179-213. 9) J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193. 10) J. Herzog and B. Ulrich, Self-linked curve singularities, Nagoya Math. J., 120 (1990), 129-153. 11) C. Huneke, On the finite generation of symbolic blow-ups, Math. Z., 179 (1982), 465-472. 12) C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J., 34 (1987), 293-318. 13) S. Huckaba, Symbolic powers of prime ideals with applications to hypersurface rings, Nagoya Math. J., 113 (1989), 161-172. 14) S. Huckaba, Analytic spread modulo an element and symbolic Rees algebras, J. Algebra, 128 (1990), 306-320. 15) S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102 (1986), 135-154. 16) D. Katz and L. J. Ratliff, Jr., On the symbolic Rees ring of a primary ideal, Comm. in Algebra, 14 (1986), 959-970. 17) M. P. Murthy, A note on factorial rings, Arch. Math., 15 (1964), 418-420. 18) M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math., 1958, Cambridge Univ. Press, 1960. 19) D. Rees, On a problem of Zariski, Illinois J. Math., 2 (1958), 145-149. 20) P. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc., 94 (1985), 589-592. 21) P. Schenzel, Examples of Noetherian symbolic blow-up rings, Rev. Roumaine Math. Pures Appl., 33(1988), 4, 375-383. 22) A. Simis and N. V. Trung, The divisor class group of ordinary and symbolic blow-ups, Math. Z., 198 (1988), 479-491. 23) P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93-101.
Right : [1] N. Bourbaki, Commutative Algebra, Addison-Wesley Publishing Company, 1972. [2] L. Burch, Codimension and analytic spread, Proc. Camb. Phil. Soc., 72 (1972), 369-373. [3] R. C. Cowsik, Symbolic powers and the number of defining equations, Algebra and Its Applications, Lecture Notes in Pure and Appl. Math., 91 (1985), 13-14. [4] S. Eliahou, Symbolic powers of monomial curves, J. Algebra, 117 (1988), 437-456, [5] S. Goto, M. Herrmann, K. Nishida and O. Villamayor, On the structure of Noetherian symbolic Rees algebras, Manuscripta Math., 67 (1990), 197-225. [6] S. Goto, K. Nishida and Y. Shimoda, The Gorensteinness of the symbolic blow-ups for certain space monomial curves, in preparation. [7] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Lecture Notes in Pure and Appl. Math., 68 (1982), 201-231. [8] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30(1978), 179-213. [9] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193. [10] J. Herzog and B. Ulrich, Self-linked curve singularities, Nagoya Math. J., 120 (1990), 129-153. [11] C. Huneke, On the finite generation of symbolic blow-ups, Math. Z., 179 (1982), 465-472. [12] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J., 34 (1987), 293-318. [13] S. Huckaba, Symbolic powers of prime ideals with applications to hypersurface rings, Nagoya Math. J., 113 (1989), 161-172. [14] S. Huckaba, Analytic spread modulo an element and symbolic Rees algebras, J. Algebra, 128 (1990), 306-320. [15] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102 (1986), 135-154. [16] D. Katz and L. J. Ratliff, Jr., On the symbolic Rees ring of a primary ideal, Comm. in Algebra, 14 (1986), 959-970. [17] M. P. Murthy, A note on factorial rings, Arch. Math., 15 (1964), 418-420. [18] M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math., 1958, Cambridge Univ. Press, 1960. [19] D. Rees, On a problem of Zariski, Illinois J. Math., 2 (1958), 145-149. [20] P. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc., 94 (1985), 589-592. [21] P. Schenzel, Examples of Noetherian symbolic blow-up rings, Rev. Roumaine Math. Pures Appl., 33(1988), 4, 375-383. [22] A. Simis and N. V. Trung, The divisor class group of ordinary and symbolic blow-ups, Math. Z., 198 (1988), 479-491. [23] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93-101.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -