訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M.S. Baouendi and F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math., 113 (1981), 387-421. 2) L. Cattabriga, L. Rodino and L. Zanghirati, Analytic-Gevrey hypoellipticity for a class of pseudo-differential operators with multiple characteristics, Comm. Part. Diff. Eq., 15, (1990), 81-96. 3) T. Gramchev, Powers of Mizohata type operators in Gevrey classes, Bollettino U.M.I. B(7), 5 (1991), 135-156. 4) S. Greenfield and N. Wallach, Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc., 31 (1972), 112-114. 5) K. Kajitani and S. Wakabayashi, Microhyperbolic operators in Gevrey class, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25(1989), 169-221. 6) H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA., 20 (1973), 25-105. 7) T. Okaji, Gevrey hypoelliptic operators which are not C∞-hypoelliptic, J. Math. Kyoto Univ., 28 (1988), 311-322. 8) L. Rodino, On linear partial differential operators with multiple characteristics, Conf, on Part. Diff. Eq., Holzhau-DDR, 1988. 9) P. Popivanov, Doctoral thesis, Math. Inst., Bulg. Acad, of Sci. Sofia, 1986, see also Mat. Sb. (N.S.), 100 (1976), 217-241 (Russian): Mat. USSR-Sb, 29 (1976), 193-216. 10) C. Siegel, Über die Normalform analytischer Differential-gleichungen in der Nähe einer Gleichgewichtslösung, Nach. Akad. Wiss. Göttingen, (1952), 21-30. 11) K. Taira, Le principle du maximum et l'hypoellipticité globale, Seminaire Bony-Sjöstrand-Meyer 1984-1985, n°1. 12) K. Tanaka, Infinitely many periodic solutions for the equation: utt-uxx±|u|s-1u=f(x, t), Comm. Part. Diff. Eq., 10 (1985), 1317-1345. 13) W. Wasow, Linear turning point theory, Springer-Verlag, New York 1985. 14) M. Yoshino, An application of generalized implicit function theorem to Goursat problems for nonlinear Leray-Volevich systems, J. Diff. Eq., 57 (1985), 44-69. 15) M. Yoshino,The diophantine nature for the convergence of formal solutions, Tohoku Math. J., 38 (1986), 625-641. 16) M. Yoshino, A class of globally hypoelliptic operators on the torus, Math. Z., 201 (1989), 1-11.
Right : [1] M. S. Baouendi and F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math., 113 (1981), 387-421. [2] L. Cattabriga, L. Rodino and L. Zanghirati, Analytic-Gevrey hypoellipticity for a class of pseudo-differential operators with multiple characteristics, Comm. Part. Diff. Eq., 15, (1990), 81-96. [3] T. Gramchev, Powers of Mizohata type operators in Gevrey classes, Bollettino U. M. I. B (7), 5 (1991), 135-156. [4] S. Greenfield and N. Wallach, Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc., 31 (1972), 112-114. [5] K. Kajitani and S. Wakabayashi, Microhyperbolic operators in Gevrey class, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25 (1989), 169-221. [6] H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA., 20 (1973), 25-105. [7] T. Okaji, Gevrey hypoelliptic operators which are not C∞-hypoelliptic, J. Math. Kyoto Univ., 28 (1988), 311-322. [8] L. Rodino, On linear partial differential operators with multiple characteristics, Conf. on Part. Diff. Eq., Holzhau-DDR, 1988. [9] P. Popivanov, Doctoral thesis, Math. Inst., Bulg. Acad. of Sci. Sofia, 1986, see also Mat. Sb. (N.S.), 100 (1976), 217-241 (Russian): Mat. USSR-Sb, 29 (1976), 193-216. [10] C. Siegel, Über die Normalform analytischer Differential-gleichungen in der Nähe einer Gleichgewichtslösung, Nach. Akad. Wiss. Göttingen, (1952), 21-30. [11] K. Taira, Le principle du maximum et l'hypoellipticité globale, Seminaire Bony-Sjöstrand-Meyer 1984-1985, n°1. [12] K. Tanaka, Infinitely many periodic solutions for the equation: utt-uxx±|u|s-1u=f(x,t), Comm. Part. Diff. Eq., 10 (1985), 1317-1345. [13] W. Wasow, Linear turning point theory, Springer-Verlag, New York 1985. [14] M. Yoshino, An application of generalized implicit function theorem to Goursat problems for nonlinear Leray-Volevich systems, J. Diff. Eq., 57 (1985), 44-69. [15] M. Yoshino,The diophantine nature for the convergence of formal solutions, Tôhoku Math. J., 38 (1986), 625-641. [16] M. Yoshino, A class of globally hypoelliptic operators on the torus, Math. Z., 201 (1989), 1-11.