Published: 1992 Received: July 20, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. A. Adams, Sobolev Spaces, Academic Press, 1975. 2) S. Albeverio, M. Fukushima, W. Karwowski and L. Streit, Capacity and Quantum Mechanical Tunneling, Commun. Math. Phys., 81 (1981), 501-513. 3) S. Albeverio, F. Gesztesy, W. Karwowski and L. Streit, On the connection between Schrödinger and Dirichlet forms, J. Math. Phys., 26 (1985), 2546-2553. 4) S. Albeverio, R. Høegh-Krohn and L. Streit, Energy forms, Hamiltonians, and distorted Brownian paths, J. Math. Phys., 18 (1977), 907-917. 5) S. Albeverio and S. Kusuoka, Maximality of infinite dimensional Dirichlet forms and Høegh-Krohn's model of quantum fields, Kyoto-Bochum, preprint. 6) S. Albeverio and M. Röckner, On Dirichlet forms on topological vector spaces; existence and maximality, To appear in Proc. Bad-Honnef Conference, ed. N. Christopeit et al. 7) G. Allian, Sur la representation des forms de Dirichlet, Ann. Inst. Fourier, 25 (1975), 1-10. 8) M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Kodansha, 1980. 9) M. Fukushima, On Dirichlet spaces and Dirichlet rings, Proc. Japan Acad., 45 (1969), 433-436. 10) M. Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc., 155 (1971), 455-473. 11) M. Fukushima and M. Takeda, A transformation of a symmetric Markov process and the Donsker-Varadhan theory, Osaka J. Math., 21 (1984), 311-326. 12) K. Ito and H. P. Mckean, Diffusion processes and their sample paths, Springer-Verlag, 1965. 13) A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, 1985. 14) M. M. H. Pang, L1-properties of two classes of singular second order elliptic operators, J. London Math. Soc., 38 (1988), 525-543. 15) M. Reed and B. Simon, Methods of Modern Mathematical physics II, Academic Press, 1975. 16) M. Röckner and N. Wielens, Dirichlet forms-closability and change of speed measures, Infinite Dimensional Analysis and Stochastic Processes, ed. S. Albeverio, Pitman, London, 1985, pp. 119-144. 17) M. Takeda, On the uniqueness of Markovian self-adjoint extension of diffusion operators on infinite dimensional spaces, Osaka J. Math., 22 (1985), 733-742. 18) N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Func. Anal., 61 (1985), 98-115.
Right : [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975. [2] S. Albeverio, M. Fukushima, W. Karwowski and L. Streit, Capacity and Quantum Mechanical Tunneling, Commun. Math. Phys., 81 (1981), 501-513. [3] S. Albeverio, F. Gesztesy, W. Karwowski and L. Streit, On the connection between Schrödinger and Dirichlet forms, J. Math. Phys., 26 (1985), 2546-2553. [4] S. Albeverio, R. Høegh-Krohn and L. Streit, Energy forms, Hamiltonians, and distorted Brownian paths, J. Math. Phys., 18 (1977), 907-917. [5] S. Albeverio and S. Kusuoka, Maximality of infinite dimensional Dirichlet forms and Høegh-Krohn's model of quantum fields, Kyoto-Bochum, preprint. [6] S. Albeverio and M. Röckner, On Dirichlet forms on topological vector spaces; existence and maximality, To appear in Proc. Bad-Honnef Conference, ed. N. Christopeit et al. [7] G. Allian, Sur la representation des forms de Dirichlet, Ann. Inst. Fourier, 25 (1975), 1-10. [8] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Kodansha, 1980. [9] M. Fukushima, On Dirichlet spaces and Dirichlet rings, Proc. Japan Acad., 45 (1969), 433-436. [10] M. Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc., 155 (1971), 455-473. [11] M. Fukushima and M. Takeda, A transformation of a symmetric Markov process and the Donsker-Varadhan theory, Osaka J. Math., 21 (1984), 311-326. [12] K. Ito and H. P. Mckean, Diffusion processes and their sample paths, Springer-Verlag, 1965. [13] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, 1985. [14] M. M. H. Pang, L1-properties of two classes of singular second order elliptic operators, J. London Math. Soc., 38 (1988), 525-543. [15] M. Reed and B. Simon, Methods of Modern Mathematical physics II, Academic Press, 1975. [16] M. Röckner and N. Wielens, Dirichlet forms-closability and change of speed measures, Infinite Dimensional Analysis and Stochastic Processes, ed. S. Albeverio, Pitman, London, 1985, pp. 119-144. [17] M. Takeda, On the uniqueness of Markovian self-adjoint extension of diffusion operators on infinite dimensional spaces, Osaka J. Math., 22 (1985), 733-742. [18] N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Func. Anal., 61 (1985), 98-115.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -