Published: 1992 Received: September 04, 1991Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. Baernstein, On reflexivity and summability, Studia Math., 42 (1972), 91-94. 2) S. Banach and S. Saks, Sur la convergence forte dans les champs Lp, Studia Math., 2 (1930), 51-57. 3) B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand., 44 (1979), 357-384. 4) B. Beauzamy and J. T. Lapresté, Modèles étalés des espace de Banach, Editéurs des science et des arts, Hermann, Paris, 1984. 5) C. Bessaga and A. Pelczinski, On basis and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. 6) A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory, 7 (1974), 294-299. 7) C. L. DeVito, Functional Analysis, Pure Appl. Math., 81, Academic Press, New York, 1978. 8) L. E. Dor, On sequences spanning a complex l1 space, Proc. Amer. Math. Soc., 47 (1975), 515-516. 9) P. Erdös and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc., 59 (1976), 232-234. 10) J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math., 52 (1974), 159-186. 11) J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebite, 97, Springer, Berlin-Heidelberg- New York, 1979. 12) B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriété géométriques des espace de Banach, Studia Math., 58 (1976), 45-90. 13) S. Mazur, Uber konvexe Mengen in linearen normierten Räumen, Studia Math., 4 (1933), 70-84. 14) J. R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc., 82 (1977), 369-374. 15) H. P. Rosenthal, A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci. USA, 71 (1974), 2411-2413. 16) H. P. Rosenthal, Weakly independent sequences and the Banach-Saks property, Bull. London Math. Soc., 8 (1976), 22-24. 17) I. Singer, A remark on reflexivity and summability, Studia Math., 26 (1965), 113-114. 18) I. Singer, Bases in Banach Spaces I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 154, Springer, Berlin-Heidelberg-New York, 1970.
Right : [1] A. Baernstein, On reflexivity and summability, Studia Math., 42 (1972), 91-94. [2] S. Banach and S. Saks, Sur la convergence forte dans les champs Lp, Studia Math., 2 (1930), 51-57. [3] B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand., 44 (1979), 357-384. [4] B. Beauzamy and J. T. Lapresté, Modèles étalés des espace de Banach, Editéurs des science et des arts, Hermann, Paris, 1984. [5] C. Bessaga and A. Pelczinski, On basis and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. [6] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory, 7 (1974), 294-299. [7] C. L. DeVito, Functional Analysis, Pure Appl. Math., 81, Academic Press, New York, 1978. [8] L. E. Dor, On sequences spanning a complex l1 space, Proc. Amer. Math. Soc., 47 (1975), 515-516. [9] P. Erdös and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc., 59 (1976), 232-234. [10] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math., 52 (1974), 159-186. [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebite, 97, Springer, Berlin-Heidelberg-New York, 1979. [12] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriété géométriques des espace de Banach, Studia Math., 58 (1976), 45-90. [13] S. Mazur, Uber konvexe Mengen in linearen normierten Räumen, Studia Math., 4 (1933), 70-84. [14] J. R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc., 82 (1977), 369-374. [15] H. P. Rosenthal, A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci. USA, 71 (1974), 2411-2413. [16] H. P. Rosenthal, Weakly independent sequences and the Banach-Saks property, Bull. London Math. Soc., 8 (1976), 22-24. [17] I. Singer, A remark on reflexivity and summability, Studia Math., 26 (1965), 113-114. [18] I. Singer, Bases in Banach Spaces I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 154, Springer, Berlin-Heidelberg-New York, 1970.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -