Published: 1992 Received: September 25, 1991Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. F. Atiyah and I. M. Singer, Index theory for skew adjoint Fredholm operators, Publ. Math. IHES, 37 (1969), 5-26. 2) M. Bendersky, Application of the Ochanine genus, Math. Z., 206 (1991), 443-455. 3) R. Bott and C. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc., 2 (1989), 137-186. 4) A. L. Edmonds, Orientability of fixed point sets, Proc. Amer. Math. Soc., 82 (1981), 120-124. 5) F. Hirzebruch, Mannigfaltigkeiten and Modulformen, Max-Planck-Institut, 91-10, preprint. 6) F. Hirzebruch and P. Slodowy, Elliptic genera, involutions and homogeneous spin manifolds, Geom. Dedicata, 35 (1990), 309-343. 7) N. Hitchin, Harmonic spinors, Adv. in Math., 14 (1974), 1-55. 8) S. Ochanine, Ellptic genera, modular forms over KO*, and the Brown-Kervaire invariant, Math. Z., 206 (1991), 277-291. 9) S. Ochanine, A vanishing theorem for the elliptic genus, Max-Planck-Institut, 89-78, preprint. 10) S. Ochanine, Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle, Bull. Soc. Math. France Memoire, 5(1981). 11) K. Ono, α-invariant and S1 actions, Proc. Amer. Math. Soc., 112 (1991), 597-600. 12) K. Ono, On a theorem of Edmonds, to appear. 13) E. Witten, The index of the Dirac operator in loop space, Elliptic Curves and Modular Forms in Algebraic Topology, (ed. P.S. Landweber), Lecture Notes in Math., 1326, Springer, Berlin-Heidelberg-New York, 1989, pp. 161-181.
Right : [1] M. F. Atiyah and I. M. Singer, Index theory for skew adjoint Fredholm operators, Publ. Math. IHES, 37 (1969), 5-26. [2] M. Bendersky, Application of the Ochanine genus, Math. Z., 206 (1991), 443-455. [3] R. Bott and C. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc., 2 (1989), 137-186. [4] A. L. Edmonds, Orientability of fixed point sets, Proc. Amer. Math. Soc., 82 (1981), 120-124. [5] F. Hirzebruch, Mannigfaltigkeiten and Modulformen, Max-Planck-Institut, 91-10, preprint. [6] F. Hirzebruch and P. Slodowy, Elliptic genera, involutions and homogeneous spin manifolds, Geom. Dedicata, 35 (1990), 309-343. [7] N. Hitchin, Harmonic spinors, Adv. in Math., 14 (1974), 1-55. [8] S. Ochanine, Ellptic genera, modular forms over KO, and the Brown-Kervaire invariant, Math. Z., 206 (1991), 277-291. [9] S. Ochanine, A vanishing theorem for the elliptic genus, Max-Planck-Institut, 89-78, preprint. [10] S. Ochanine, Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle, Bull. Soc. Math. France Memoire, 5(1981). [11] K. Ono, α-invariant and S1 actions, Proc. Amer. Math. Soc., 112 (1991), 597-600. [12] K. Ono, On a theorem of Edmonds, to appear. [13] E. Witten, The index of the Dirac operator in loop space, Elliptic Curves and Modular Forms in Algebraic Topology, (ed. P. S. Landweber), Lecture Notes in Math., 1326, Springer, Berlin-Heidelberg-New York, 1989, pp. 161-181.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -