Published: 1992 Received: December 26, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AFFILIATIONDetails: Wrong :
1) Dipartimento di Matematice
Right :
1) Dipartimento di Matematica
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : A) A. Arosio, On the nonlinear Timoshenko-Kirchhoff beam equation, Quad. Dip. Mat. Univ. Parma, 61 (1990). AG) A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci., 14 (1991), 177-195. ANPP) A. Arosio, R. Natalini, S. Panizzi and M. G. Paoli, Fourth order abstract evolution equations, to appear in Nonlinear hyperbolic equations, Proc. Varenna 1990, (eds. M.K.V. Murthy and S. Spagnolo), Res. Notes Mather., Longman, Harlow. AP) A. Arosio and S. Panizzi, Global bounded weak solutions for an abstract nonlinear Timoshenko beam equation with four propagation speeds, Funkcial. Ekvac., to appear. APP1) A. Arosio, S. Panizzi and M. G. Paoli, Inhomogeneous Timoshenko beam equations, short communication at 5th Symposium on control of distributed parameter system (Perpignan, June 1989), Math. Mech. Appl. Sci., to appear. APP2) A. Arosio, S. Panizzi and M. G. Paoli, Temporally inhomogeneous Timoshenko beam equations, Ann. Mat. Pura Appl., to appear. HR) M. H. Sapir and E. L. Reiss, Dynamic buckling of a nonlinear Timoshenko beam, SIAM J. Appl. Math., 37 (1979), 290-301. K) T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1985. Ka) H. Kauderer, Nichtlineare mechanik, Part 2, B II, §1.88 b, Springer, Berlin, 1958. Ki) G. Kirchhoff, Mechanik, ch. 29 §7, 3rd ed., Teubner, Leipzig, 1883. N) R. Narasimha, Nonlinear vibration of an elastic string, J. Sound Vibration, 8 (1968), 134-146. NM) A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, ch. 7, Wiley-Interscience, New York, 1979. P) S. Panizzi, Abstract nonlinear Timoshenko beam equation, Rend. Sem. Mat. Univ. Padova, to appear. T) S.P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), 744-746. (reprinted in Collected papers, McGraw-Hill, New York, 1953, cf, also Vibration problems in engineering, 3rd ed., Van Nostrand, Princeton, 1955). Tu) M. Tucsnak, On the Initial and Boundary Value Problem for the Nonlinear Timoshenko Beam, An. Acad, bras. Ci., 63(2) (1991), 115-125.
Right : [A] A. Arosio, On the nonlinear Timoshenko-Kirchhoff beam equation, Quad. Dip. Mat. Univ. Parma, 61 (1990). [AG] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci., 14 (1991), 177-195. [ANPP] A. Arosio, R. Natalini, S. Panizzi and M. G. Paoli, Fourth order abstract evolution equations, to appear in Nonlinear hyperbolic equations, Proc. Varenna 1990, (eds. M. K. V. Murthy and S. Spagnolo), Res. Notes Mather., Longman, Harlow. [AP] A. Arosio and S. Panizzi, Global bounded weak solutions for an abstract nonlinear Timoshenko beam equation with four propagation speeds, Funkcial. Ekvac., to appear. [APP1] A. Arosio, S. Panizzi and M. G. Paoli, Inhomogeneous Timoshenko beam equations, short communication at 5th Symposium on control of distributed parameter system (Perpignan, June 1989), Math. Mech. Appl. Sci., to appear. [APP2] A. Arosio, S. Panizzi and M. G. Paoli, Temporally inhomogeneous Timoshenko beam equations, Ann. Mat. Pura Appl., to appear. [HR] M. H. Sapir and E. L. Reiss, Dynamic buckling of a nonlinear Timoshenko beam, SIAM J. Appl. Math., 37 (1979), 290-301. [K] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1985. [Ka] H. Kauderer, Nichtlineare mechanik, Part 2, B II, §1.88 b, Springer, Berlin, 1958. [Ki] G. Kirchhoff, Mechanik, ch. 29 §7, 3rd ed., Teubner, Leipzig, 1883. [N] R. Narasimha, Nonlinear vibration of an elastic string, J. Sound Vibration, 8 (1968), 134-146. [NM] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, ch. 7, Wiley-Interscience, New York, 1979. [P] S. Panizzi, Abstract nonlinear Timoshenko beam equation, Rend. Sem. Mat. Univ. Padova, to appear. [T] S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), 744-746. (reprinted in Collected papers, McGraw-Hill, New York, 1953, cf, also Vibration problems in engineering, 3rd ed., Van Nostrand, Princeton, 1955). [Tu] M. Tucsnak, On the Initial and Boundary Value Problem for the Nonlinear Timoshenko Beam, An. Acad, bras. Ci., 63 (2) (1991), 115-125.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -