訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : On the subalgebras _??_0 and _??_ev of semisimple graded Lie algebras Right : On the subalgebras g0 and gev of semisimple graded Lie algebras
訂正日: 2006/10/20訂正理由: -訂正箇所: 所属機関情報訂正内容: 訂正前 :
1) Department of Mathematics Sophia University Catolica-RJ
訂正後 :
1) Department of Mathematics Sophia University
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1-34. 2) A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. 3) N. Bourbaki, Groupes et Algèbres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981. 4) J. H. Cheng, Graded Lie algebras of the second kind, Trans. Amer. Math. Soc., 302 (1987), 467-488. 5) D. Z. Djokovic, Classification of Z-graded real semi-simple Lie algebras, J. Algebra, 76 (1982), 367-382. 6) E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6, 1960, pp. 111-244. 7) Z. Hou, On the classification of Z-graded real semi-simple Lie algebras, Northeastern Mathematics, 2 (1986), 258-264. 8) S. Kaneyuki, On classification of parahermitian symmetric spaces, Tokyo J. Math., 8 (1985), 473-482. 9) S. Kaneyuki, Pseudo-hermitian symmetric spaces and Siegel domains over non-degenerate cones, Hokkaido Math. J., 20 (1991), 213-239. 10) S. Kaneyuki, On a remarkable class of homogeneous symplectic manifolds, Proc. Japan Acad. Ser. A, 67 (1991), 129-131. 11) S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., 112 (1988), 81-115. 12) S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures I, J. Math. Mech., 13 (1964), 875-908. 13) O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lect., Univ. Calif., Irvine, 1977. 14) I. Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math., 71 (1960), 77-110. 15) N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 2 (1976), 131-190. 16) S. Kaneyuki, Homogeneous symplectic manifolds and dipolarizations in Lie algebras, Tokyo J. Math., 15 (1992), 279-291.
Right : [1] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1-34. [2] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. [3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981. [4] J. H. Cheng, Graded Lie algebras of the second kind, Trans. Amer. Math. Soc., 302 (1987), 467-488. [5] D. Z. Djokovic, Classification of Z-graded real semi-simple Lie algebras, J. Algebra, 76 (1982), 367-382. [6] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6, 1960, pp. 111-244. [7] Z. Hou, On the classification of Z-graded real semi-simple Lie algebras, Northeastern Mathematics, 2 (1986), 258-264. [8] S. Kaneyuki, On classification of parahermitian symmetric spaces, Tokyo J. Math., 8 (1985), 473-482. [9] S. Kaneyuki, Pseudo-hermitian symmetric spaces and Siegel domains over non-degenerate cones, Hokkaido Math. J., 20 (1991), 213-239. [10] S. Kaneyuki, On a remarkable class of homogeneous symplectic manifolds, Proc. Japan Acad. Ser. A, 67 (1991), 129-131. [11] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., 112 (1988), 81-115. [12] S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures I, J. Math. Mech., 13 (1964), 875-908. [13] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lect., Univ. Calif., Irvine, 1977. [14] I. Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math., 71 (1960), 77-110. [15] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 2 (1976), 131-190. [16] S. Kaneyuki, Homogeneous symplectic manifolds and dipolarizations in Lie algebras, Tokyo J. Math., 15 (1992), 279-291.