訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523-615. 2) M. F. Atiyah, N. J, Hitchin and I. M. Singer, Self-duality in four dimensionl Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362 (1978), 425-461. 3) O. Biquard, Fibrés parabolique stables et connexions singulières plates, Bull. Soc. Math. France, 119 (1991), 231-257. 4) H. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helve., 66 (1991), 389-447. 5) S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom., 33 (1991), 169-213. 6) S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom., 18 (1983), 269-277. 7) S. K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable bundles, Proc. London Math. Soc. (3), 50 (1985), 1-26. 8) S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J., 54 (1987), 231-247. 9) A. Fujiki, Hyperkähler structure on the moduli space of flat bundles, Lecture Notes in Math., 1468, Springer, 1991, pp. 1-83. 10) M. Furuta and B. Steer, Seifert fibred homology 3-spheres and Yang-Mills equations on Riemann surfaces with marked points, preprint. 11) N. J. Hitchin, The self duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 58-126. 12) N. J. Hitchin, The symplectic geometry of moduli space of connections and geometric quantization, Progr. of Theoret. Phys., Supplement, 102 (1990), 159-174. 13) N. J. Hitchin, A. Karlhede, U. Lindström and M. Rocek, Hyperkähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987), 535-589. 14) R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 409-447. 15) V. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann., 248 (1980), 205-239. 16) M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82 (1965), 540-564. 17) C. T. Simpson, Constructing variation of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. 18) C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc., 3 (1990), 713-770. 19) K. K. Uhlenbeck and S. T. Yau, On the existence of Hermitian Yang-Mills connections in stable bundles, Comm. Pure Appl. Math., 39-S (1986), 257-293. 20) B. Nasatyr, Oxford thesis.
Right : [1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523-615. [2] M. F. Atiyah, N. J, Hitchin and I. M. Singer, Self-duality in four dimensionl Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362 (1978), 425-461. [3] O. Biquard, Fibrés parabolique stables et connexions singulières plates, Bull. Soc. Math. France, 119 (1991), 231-257. [4] H. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helve., 66 (1991), 389-447. [5] S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom., 33 (1991), 169-213. [6] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom., 18 (1983), 269-277. [7] S. K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable bundles, Proc. London Math. Soc. (3), 50 (1985), 1-26. [8] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J., 54 (1987), 231-247. [9] A. Fujiki, Hyperkähler structure on the moduli space of flat bundles, Lecture Notes in Math., 1468, Springer, 1991, pp. 1-83. [10] M. Furuta and B. Steer, Seifert fibred homology 3-spheres and Yang-Mills equations on Riemann surfaces with marked points, preprint. [11] N. J. Hitchin, The self duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 58-126. [12] N. J. Hitchin, The symplectic geometry of moduli space of connections and geometric quantization, Progr. of Theoret. Phys., Supplement, 102 (1990), 159-174. [13] N. J. Hitchin, A. Karlhede, U. Lindström and M. Rocek, Hyperkähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987), 535-589. [14] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 409-447. [15] V. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann., 248 (1980), 205-239. [16] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82 (1965), 540-564. [17] C. T. Simpson, Constructing variation of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. [18] C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc., 3 (1990), 713-770. [19] K. K. Uhlenbeck and S. T. Yau, On the existence of Hermitian Yang-Mills connections in stable bundles, Comm. Pure Appl. Math., 39-S (1986), 257-293. [20] B. Nasatyr, Oxford thesis.