訂正日: 2006/10/20訂正理由: -訂正箇所: 論文サブタイトル訂正内容: Wrong : Dedicated to Professor Mutsuhide Matsumura on his 60th birthday in 1991
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : [A] K. Amano, The global hypoellipticity of degenerate elliptic-parabolic operators, J. Math. Soc. Japan, 40 (1988), 181-204. [F] V.S. Fedii, On a criterion for hypoellipticity, Math. USSR-Sb., 14 (1971), 15-45. [FP] C. Fefferman and D.H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. USA, 75 (1978), 4673-4674. [Hr1] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967),147-171. [Hr2] L. Hörmander, The analysis of linear partial differential operators III, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. [Ho1] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators, J. Math. Kyoto Univ., 28 (1988), 615-632. [Ho2] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators II, J. Math. Kyoto Univ., 29 (1989), 497-513. [KW] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sci. Math., 115 (1991), 397-449. [KS] S. Kusuoka and D.W. Stroock, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), 1-76. [Mo] Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675. [Ma] T. Morioka, Hypoellipticity for some infinitely degenerate elliptic operators of second order, J. Math. Kyoto Univ., 32 (1992), 373-386. [OR] O.A. Oleinik and E.V. Radkevic, Second order equations with non-negative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New York, 1973. [WS] S. Wakabayashi and M. Suzuki, Microhypoellipticity for a class of pseudodifferential operators with double characteristics, Funkcial. Ekvac., to appear.
Right : [A] K. Amano, The global hypoellipticity of degenerate elliptic-parabolic operators, J. Math. Soc. Japan, 40 (1988), 181-204. [F] V. S. Fedii, On a criterion for hypoellipticity, Math. USSR-Sb., 14 (1971), 15-45. [FP] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. USA, 75 (1978), 4673-4674. [Hr1] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. [Hr2] L. Hörmander, The analysis of linear partial differential operators III, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. [Ho1] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators, J. Math. Kyoto Univ., 28 (1988), 615-632. [Ho2] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators II, J. Math. Kyoto Univ., 29 (1989), 497-513. [KW] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sci. Math., 115 (1991), 397-449. [KS] S. Kusuoka and D. W. Stroock, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), 1-76. [Mo] Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675. [Ma] T. Morioka, Hypoellipticity for some infinitely degenerate elliptic operators of second order, J. Math. Kyoto Univ., 32 (1992), 373-386. [OR] O. A. Oleinik and E. V. Radkevic, Second order equations with non-negative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New York, 1973. [WS] S. Wakabayashi and M. Suzuki, Microhypoellipticity for a class of pseudodifferential operators with double characteristics, Funkcial. Ekvac., to appear.