訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) R. A. Adams, Sobolev Spaces, Academic Press, New York-San Francisco-London, 1975. 2) S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Ser. IV, 2 (1975), 151-218. 3) M. Beals and W. Strauss, Lp estimates for the wave equation with a potential, preprint, 1992. 4) L. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer, Berlin-Heidelberg-New York, 1976. 5) Ph. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344. 6) J. Ginibre and M. Moulin, Hilbert space approach to quantum mechanical three body problem, Ann. Inst. H. Poincaré Sec. A, 21 (1974), 97-145. 7) J. Ginibre and G. Velo, The global Cauchy problem for some non-linear Schrödinger equations, revisited, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2 (1985), 309-327. 8) A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. 9) A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2(Rm), m_??_5, Duke Math. J., 47 (1980), 57-80. 10) A. Jensen and S. Nakamura, Mapping properties of functions of Schrödinger operators between Lp-spaces and Besov spaces, preprint, 1992. 11) J.-L. Journe, A. Soffer and C. D. Sogge, Decay estimated for Schrödinger operators, Comm. Pure. Appl. Math., 44 (1991), 573-604. 12) T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12 (1959), 403-422. 13) T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1966), 258-279. 14) T. Kato and S. T. Kuroda, Theory of simple scattering and eigenfunction expansions, Functional analysis and related fields, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 99-131. 15) T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Reviews in Math. Phys., 1 (1989), 481-496. 16) S. T. Kuroda, An introduction to scattering theory, Lecture Notes Series, 51, Aarhus University, 1978, Aarhus, Denmark. 17) S. T. Kuroda, Scattering theory for differential operators, I and II, J. Math. Soc. Japan, 25 (1972), 75-104 and 222-234. 18) A. Melin, Intertwining methods in multi-dimensional scattering theory, I, preprint, Lund University, (1987). 19) M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56. 20) H. Pecher, Lp-Abschätzungen und klassiche Lösungen für nicht lineare Wellengleichungen, I, Math. Z., 150 (1976), 159-183. 21) H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270. 22) M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Selfadjointness, Academic Press, New York-San Francisco-London, 1975. 23) N. Shenk and D. Thoe, Outgoing solutions of (-Δ+q-k2)u=f in an exterior domain, J. Math. Anal. Appl., 31 (1970), 81-116. 24) R. S. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Anal., 5 (1970), 218-235. 25) R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714. 26) M. Taylor, Pseudo-differential Operators, Princeton Univ. Press, Princeton NJ., 1981. 27) G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1922. 28) K. Yajima, On smoothing property of Schrödinger propagators, Lecture Notes in Math., 1450, 1990, pp. 20-35. 29) K. Yajima, The Wk,p-continuity of wave operators for Schrödinger operators, Proc. Japan Acad., 69 (1993), 94 98.
Right : [1] R. A. Adams, Sobolev Spaces, Academic Press, New York-San Francisco-London, 1975. [2] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Ser. IV, 2 (1975), 151-218. [3] M. Beals and W. Strauss, Lp estimates for the wave equation with a potential, preprint, 1992. [4] L. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer, Berlin-Heidelberg-New York, 1976. [5] Ph. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344. [6] J. Ginibre and M. Moulin, Hilbert space approach to quantum mechanical three body problem, Ann. Inst. H. Poincaré Sec. A, 21 (1974), 97-145. [7] J. Ginibre and G. Velo, The global Cauchy problem for some non-linear Schrödinger equations, revisited, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2 (1985), 309-327. [8] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. [9] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2(Rm), m≥5, Duke Math. J., 47 (1980), 57-80. [10] A. Jensen and S. Nakamura, Mapping properties of functions of Schrödinger operators between Lp-spaces and Besov spaces, preprint, 1992. [11] J. -L. Journe, A. Soffer and C. D. Sogge, Decay estimated for Schrödinger operators, Comm. Pure. Appl. Math., 44 (1991), 573-604. [12] T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12 (1959), 403-422. [13] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1966), 258-279. [14] T. Kato and S. T. Kuroda, Theory of simple scattering and eigenfunction expansions, Functional analysis and related fields, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 99-131. [15] T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Reviews in Math. Phys., 1 (1989), 481-496. [16] S. T. Kuroda, An introduction to scattering theory, Lecture Notes Series, 51, Aarhus University, 1978, Aarhus, Denmark. [17] S. T. Kuroda, Scattering theory for differential operators, I and II, J. Math. Soc. Japan, 25 (1972), 75-104 and 222-234. [18] A. Melin, Intertwining methods in multi-dimensional scattering theory, I, preprint, Lund University, (1987). [19] M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56. [20] H. Pecher, Lp-Abschätzungen und klassiche Lösungen für nicht lineare Wellengleichungen, I, Math. Z., 150 (1976), 159-183. [21] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270. [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Selfadjointness, Academic Press, New York-San Francisco-London, 1975. [24] R. S. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Anal., 5 (1970), 218-235. [25] R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714. [26] M. Taylor, Pseudo-differential Operators, Princeton Univ. Press, Princeton NJ., 1981. [27] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1922. [28] K. Yajima, On smoothing property of Schrödinger propagators, Lecture Notes in Math., 1450, 1990, pp. 20-35. [29] K. Yajima, The Wk,p-continuity of wave operators for Schrödinger operators, Proc. Japan Acad., 69 (1993), 94-98.