Published: 1995 Received: November 29, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : Br75) P. Brenner, On Lp-Lp'estimates for the wave equation, Math. Z., 145 (1975), 251-254. Br89) P. Brenner, On space-time means and strong global solutions of nonlinear hyperbolic equations, Math. Z., 201 (1989), 45-55. BW81) P. Brenner and W. v. Wahl, Global classical solutions of nonlinear wave equations, Math. Z., 176 (1981), 87-121. GV85) J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. Gr90) M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509. Hö60) L. Hörmander, Estimates for translation invariant operators in Lp-spaces, Acta Math., 104 (1960), 93-145. Jö61) K. Jörgens, Das Anfangswertproblem in Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., 77 (1961), 295-308. Ma76) A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 169-189. Mi65) S. G. Michlin, Multidimensional Singular Integrals and Integral Equations, Ox-ford-London-New York-Paris, 1965. Mo84) K. Mochizuki, Scattering Theory of The Wave Equation, Kinokuniya Shoten, 1984, (in Japanese). Na78) M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan., 30 (1978), 747-762. Na83) M. Nakao, Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237-250. Pe76) H. Pecher, Lp-Abschätzunger und Klassische Lösungen für nichtlineare Wellen-gleich ungen I, Math. Z., 150 (1976), 159-183. Ra90) R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms, J. Reine Angew. Math., 412 (1990), 1-19. St70) W. A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brasil. Ciênc., 42 (1970), 645-651.
Right : [Br75] P. Brenner, On Lp-Lp' estimates for the wave equation, Math. Z., 145 (1975), 251-254. [Br89] P. Brenner, On space-time means and strong global solutions of nonlinear hyperbolic equations, Math. Z., 201 (1989), 45-55. [BW81] P. Brenner and W. v. Wahl, Global classical solutions of nonlinear wave equations, Math. Z., 176 (1981), 87-121. [GV85] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. [Gr90] M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509. [Hö60] L. Hörmander, Estimates for translation invariant operators in Lp-spaces, Acta Math., 104 (1960), 93-145. [Jö61] K. Jörgens, Das Anfangswertproblem in Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., 77 (1961), 295-308. [Ma76] A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 169-189. [Mi65] S. G. Michlin, Multidimensional Singular Integrals and Integral Equations, Oxford-London-New York-Paris, 1965. [Mo84] K. Mochizuki, Scattering Theory of The Wave Equation, Kinokuniya Shoten, 1984, (in Japanese). [Na78] M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan., 30 (1978), 747-762. [Na83] M. Nakao, Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237-250. [Pe76] H. Pecher, Lp-Abschätzunger und Klassische Lösungen für nichtlineare Wellen-gleich ungen I, Math. Z., 150 (1976), 159-183. [Ra90] R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms, J. Reine Angew. Math., 412 (1990), 1-19. [St70] W. A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brasil. Ciênc., 42 (1970), 645-651.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -