訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Extreme points and linear isometries of the domain of a closed *-derivation in C(K) Right : Extreme points and linear isometries of the domain of a closed *-derivation in C(K)
訂正日: 2006/10/20訂正理由: -訂正箇所: 所属機関情報訂正内容: 訂正前 :
1) Department of Mathematical Science Graduate School of Science and Technology Niigata University
2) Department of Mathematics Niigata University
訂正後 :
1) Department of Mathematical Science Graduate School of Science and Technology Niigata University
2) Department of Mathematics Faculty of Science Niigata University
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) C. J. K. Batty, Unbounded derivations of commutative C*-algebras, Comm. Math. Phys., 61 (1978), 261-266. 2) C. J. K. Batty, Derivations on compact spaces, Proc. London Math. Soc. (3), 42 (1981), 299-330. 3) O. Bratteli and D. Robinson, Unbounded derivations of C*-algebras, Comm. Math. Phys., 42 (1975), 253-268. 4) O. Bratteli and D. Robinson, Unbounded derivations of C*-algebras II, Comm. Math. Phys., 46 (1976), 11-30. 5) O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer-Verlag, Heidelberg-Berlin-New York, 1979. 6) M. Cambern, Isometries of certain Banach algebras, Studia Math., 25 (1965), 217-225. 7) M. Cambern and J. T. Pathak, Isometries of spaces of differentiable functions, Math. Japon., 26 (1981), 253-260. 8) N. Dunford and J. T. Schwartz, Linear Operators Part I; General Theory, Interscience, New York, 1958. 9) F. H. Goodman, Closed derivations in commutative C*-algebras, J. Funct. Anal., 39 (1980), 308-346. 10) K. Jarosz and V. D. Pathak, Isometry between function spaces, Trans. Amer. Math. Sac., 305 (1988), 193-206. 11) H. Kurose, An example of a non quasi-well behaved derivations in C(I), J. Funct. Anal., 43 (1981), 193-201. 12) H. Kurose, Closed derivations in C(I), Tohoku Math. J. (2), 35 (1983), 341-347. 13) K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math., 21 (1961), 55- 66. 14) A. McIntosh, Functions and derivations of C*-algebras, J. Funct. Anal., 31 (1978), 264-275. 15) W. P. Novinger, Linear isometries of subspaces of continuous functions, Studia Math., 53 (1975), 273-276. 16) T. Okayasu and M. Takagaki, Linear isometries of function spaces, RIMS Kokyûroku, Kyoto Univ., 743, pp. 130-140. 17) S. Ota, Certain operator algebras induced by *-derivations in C*-algebras on an indefinite inner product space, J. Funct. Anal., 30 (1978), 238-244. 18) S. Ota, Closed derivations in C*-algebras, Math. Ann., 257 (1981), 239-250. 19) N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177-192. 20) A. K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canad. J. Math., 20 (1968), 1150-1164. 21) S. Sakai, The theory of unbounded derivations in C*-algebras, Lecture Notes, Univ. of Copenhagen and Newcastle upon Tyne, 1977. 22) S. Sakai, Operator algebras in dynamical systems: The theory of unbounded derivations in C*-algebras, Cambridge University Press, Cambridge, 1991. 23) K.W. Tam, Isometries of certain function spaces, Pacific J. Math., 31 (1969), 233-246. 24) J. Tomiyama, The theory of closed derivations in the algebra of continuous functions on the unit interval, Institute of Mathematics National Tsing Hua University, 1983.
Right : [1] C. J. K. Batty, Unbounded derivations of commutative C*-algebras, Comm. Math. Phys., 61 (1978), 261-266. [2] C. J. K. Batty, Derivations on compact spaces, Proc. London Math. Soc. (3), 42 (1981), 299-330. [3] O. Bratteli and D. Robinson, Unbounded derivations of C*-algebras, Comm. Math. Phys., 42 (1975), 253-268. [4] O. Bratteli and D. Robinson, Unbounded derivations of C*-algebras II, Comm. Math. Phys., 46 (1976), 11-30. [5] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer-Verlag, Heidelberg-Berlin-New York, 1979. [6] M. Cambern, Isometries of certain Banach algebras, Studia Math., 25 (1965), 217-225. [7] M. Cambern and J. T. Pathak, Isometries of spaces of differentiable functions, Math. Japon., 26 (1981), 253-260. [8] N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience, New York, 1958. [9] F. H. Goodman, Closed derivations in commutative C*-algebras, J. Funct. Anal., 39 (1980), 308-346. [10] K. Jarosz and V. D. Pathak, Isometry between function spaces, Trans. Amer. Math. Sac., 305 (1988), 193-206. [11] H. Kurose, An example of a non quasi-well behaved derivations in C(I), J. Funct. Anal., 43 (1981), 193-201. [12] H. Kurose, Closed derivations in C(I), Tôhoku Math. J. (2), 35 (1983), 341-347. [13] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math., 21 (1961), 55-66. [14] A. McIntosh, Functions and derivations of C*-algebras, J. Funct. Anal., 31 (1978), 264-275. [15] W. P. Novinger, Linear isometries of subspaces of continuous functions, Studia Math., 53 (1975), 273-276. [16] T. Okayasu and M. Takagaki, Linear isometries of function spaces, RIMS Kôkyûroku, Kyoto Univ., 743, pp. 130-140. [17] S. Ota, Certain operator algebras induced by *-derivations in C*-algebras on an indefinite inner product space, J. Funct. Anal., 30 (1978), 238-244. [18] S. Ota, Closed derivations in C*-algebras, Math. Ann., 257 (1981), 239-250. [19] N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177-192. [20] A. K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canad. J. Math., 20 (1968), 1150-1164. [21] S. Sakai, The theory of unbounded derivations in C*-algebras, Lecture Notes, Univ. of Copenhagen and Newcastle upon Tyne, 1977. [22] S. Sakai, Operator algebras in dynamical systems: The theory of unbounded derivations in C*-algebras, Cambridge University Press, Cambridge, 1991. [23] K. W. Tam, Isometries of certain function spaces, Pacific J. Math., 31 (1969), 233-246. [24] J. Tomiyama, The theory of closed derivations in the algebra of continuous functions on the unit interval, Institute of Mathematics National Tsing Hua University, 1983.