Published: 1996 Received: February 28, 1994Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) F. G. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein theorem, Ann. of Math., 84 (1966), 277-292. 2) S. Bernstein, Sur un théorème de Géomérie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Soc. Math. Kharkov, 5 (1915-17), 38-45. 3) E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-269. 4) Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss., 285, Springer-Verlag, 1988. 5) E. De Giorgi, Una extensione del theoreme di Bernstein, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 79-85. 6) M, do Carmo and C. K. Peng, Stable minimal surfaces in R3 are planes, Bull. Amer. Math. Soc., 1 (1979), 903-906. 7) J. Dodziuk, L2 harmonic forms on complete manifolds, Ann, of Math. Stud., 102 (1982), 291-302. 8) D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math., 33 (1980), 199-211. 9) R. Miyaoka, Harmonic 1-forms on a complete stable minimal hypersurface, (preprint). 10) B. Palmer, Stability of minimal hypersurfaces, Comm. Math. Helv., 66 (1991), 185-188. 11) R. Schoen and S. T. Yau, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, Ann. of Math. Stud., 102 (1982), 209-228. 12) J. Simons, Minimal Varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105. 13) S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717. 14) S. Tanno, Instability of spheres with deformed Riemannian metrics, Kodai Math. J., 10 (1987), 250-257.
Right : [1] F. G. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein theorem, Ann. of Math., 84 (1966), 277-292. [2] S. Bernstein, Sur un théorème de Géomérie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Soc. Math. Kharkov, 5 (1915-17), 38-45. [3] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-269. [4] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss., 285, Springer-Verlag, 1988. [5] E. De Giorgi, Una extensione del theoreme di Bernstein, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 79-85. [6] M, do Carmo and C. K. Peng, Stable minimal surfaces in R3 are planes, Bull. Amer. Math. Soc., 1 (1979), 903-906. [7] J. Dodziuk, L2 harmonic forms on complete manifolds, Ann. of Math. Stud., 102 (1982), 291-302. [8] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math., 33 (1980), 199-211. [9] R. Miyaoka, Harmonic 1-forms on a complete stable minimal hypersurface, (preprint). [10] B. Palmer, Stability of minimal hypersurfaces, Comm. Math. Helv., 66 (1991), 185-188. [11] R. Schoen and S. T. Yau, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, Ann. of Math. Stud., 102 (1982), 209-228. [12] J. Simons, Minimal Varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105. [13] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717. [14] S. Tanno, Instability of spheres with deformed Riemannian metrics, Kodai Math. J., 10 (1987), 250-257.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -