Published: 1996 Received: December 27, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Right : [AM] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math., 276 (1975), 148-166. [AS] S. S. Abhyankar and B. Singh, Embedding of certain curves, Amer. J. Math., 100 (1978), 99-175. [F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 29 (1982), 503-566. [GM] R. V. Gurjar and M. Miyanishi, Affine surfaces with k≤1, Algebraic geometry and commutative algebra in honor of Masayoshi Nagata, 1987, pp. 99-124. [LZ] V. Lin and M. Zaidenberg, An irreducible simply connected curve in C2 is equivalent to a quasihomogeneous curve, (English translation), Soviet Math. Dokl., 28 (1983), 200-204. [MS] M. Miyanishi and T. Sugie, Linearization of Gm-actions on C3, preprint. [MT] M. Miyanishi and S. Tsunoda, Absence of the affine lines on the homology planes of general types, preprint. [N] W. D. Newmann, Complex algebraic plane curves via their link at infinity, Invent. Math., 98 (1989), 445-489. [PtD] T. Petrie and T. tom Dieck, Contractible affine surfaces of Kodaira dimension one, Japan. J. Math., 16 (1990), 147-169. [Sh] I. R. Shafarevich, Basic algebraic geometry, Grundlehren, 213, Springer-Verlag, Heidelberg, 1974. [Su] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace C2, J. Math. Soc. Japan., 26 (1974), 241-252. [Z] M. Zaidenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR-Izv., 51 (1987), (English translation), 30 (1988), 503-532, Addition and Correction to the paper“Isotrivial families of curves onaffine surfaces and characterization of the affine plane”), Math. USSR-Izv., 38 (1992), 435-437.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -