訂正日: 2006/10/20訂正理由: -訂正箇所: 論文サブタイトル訂正内容: Wrong : Dedicated to the memory of Professor Kiyoshi Niino
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Math. 820, Springer-Verlag, Berlin, Heidelberg, New York, 1980. 2) A. F. Beardon, The geometry of discrete groups, Graduate. Texts in Math., 91, Springer-Verlag, New York, Heidelberg, Berlin, 1983. 3) Y, Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, Berlin, Heidelberg, New York, Paris, Hong Kong, Barcelona, 1992. 4) L. Keen, Canonical polygons for finitely generated Fuchsian groups, Acta Math., 115 (1966), 1-16. 5) L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math., 84 (1966), 404-420. 6) L. Keen, On Fricke moduli, in advances in the theory of Riemann surfaces, (ed. L.V. Ahlfors et al.), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 205-224. 7) L. Keen, A correction to “On Fricke moduli”. Proc. Amer. Math. Soc., 40 (1973), 60-62. 8) L. Keen, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc., 83 (1977), 1199-1226. 9) Y. Okumura, On the global real analytic coordinates for Teichmüller spaces, J. Math. Soc. Japan, 42 (1990), 91-101. 10) Y. Okumura, Global real analytic length parameters for Teichmüller spaces, Hiroshima Math. J., 26 (1996), 165-179. 11) Y. Okumura, Parametrizations of Teichmüller spaces, XVIth Rolf Nevanlinna Colloquium, (ed. I. Laine and O. Martio), Walter de Gruyter, Berlin, New York, 1996, pp. 181-190. 12) Y. Okumura, On the global real analytic coordinates for Teichmüller spaces II, in preparation. 13) Y. Okumura, A characterization of geometry of Möbius transformations acting on the unit disk by trace inequalities, in preparation. 14) P. Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv., 68 (1993), 278-288. 15) M. Seppälä and T. Sorvali, On geometric parametrization of Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. AI Math., 10 (1985), 515-526. 16) M. Seppälä and T. Sorvali, Parametrization of Mobius groups acting in a disk, Comment. Math. Helv., 61 (1986), 149-160. 17) M. Seppälä and T. Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, in Holomorphic Functions and Moduli II, (ed. D. Drasin et al.), Mathematical Sciences Research Institute Publications, 11, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1988, pp. 267-284. 18) M. Seppälä and T. Sorvali, Geometry of Riemann surfaces and Teichmüller spaces, Mathematics Studies, 169, North-Holland, Amsterdam, London, New York, Tokyo, 1992. 19) S. A. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., 117 (1983), 207-234. 20) S. A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom., 25 (1987), 275-296.
Right : [1] W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Math. 820, Springer-Verlag, Berlin, Heidelberg, New York, 1980. [2] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Math., 91, Springer-Verlag, New York, Heidelberg, Berlin, 1983. [3] Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, Berlin, Heidelberg, New York, Paris, Hong Kong, Barcelona, 1992. [4] L. Keen, Canonical polygons for finitely generated Fuchsian groups, Acta Math., 115 (1966), 1-16. [5] L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math., 84 (1966), 404-420. [6] L. Keen, On Fricke moduli, in advances in the theory of Riemann surfaces, (ed. L. V. Ahlfors et al.), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, N. J., 1971, pp. 205-224. [7] L. Keen, A correction to “On Fricke moduli”, Proc. Amer. Math. Soc., 40 (1973), 60-62. [8] L. Keen, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc., 83 (1977), 1199-1226. [9] Y. Okumura, On the global real analytic coordinates for Teichmüller spaces, J. Math. Soc. Japan, 42 (1990), 91-101. [10] Y. Okumura, Global real analytic length parameters for Teichmüller spaces, Hiroshima Math. J., 26 (1996), 165-179. [11] Y. Okumura, Parametrizations of Teichmüller spaces, XVIth Rolf Nevanlinna Colloquium, (ed. I. Laine and O. Martio), Walter de Gruyter, Berlin, New York, 1996, pp. 181-190. [12] Y. Okumura, On the global real analytic coordinates for Teichmüller spaces II, in preparation. [13] Y. Okumura, A characterization of geometry of Möbius transformations acting on the unit disk by trace inequalities, in preparation. [14] P. Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv., 68 (1993), 278-288. [15] M. Seppälä and T. Sorvali, On geometric parametrization of Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. AI Math., 10 (1985), 515-526. [16] M. Seppälä and T. Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv., 61 (1986), 149-160. [17] M. Seppälä and T. Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, in Holomorphic Functions and Moduli II, (ed. D. Drasin et al.), Mathematical Sciences Research Institute Publications, 11, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1988, pp. 267-284. [18] M. Seppälä and T. Sorvali, Geometry of Riemann surfaces and Teichmüller spaces, Mathematics Studies, 169, North-Holland, Amsterdam, London, New York, Tokyo, 1992. [19] S. A. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., 117 (1983), 207-234. [20] S. A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom., 25 (1987), 275-296.