Published: 1997 Received: August 18, 1994Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : B-G) S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math., 12 (1971), 112-117. BPV) W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, 1984, Springer-Verlag. EGA) J. Dieudonné and A. Grothendieck, Eléments de Géométrie Algébrique, Publ. Math. Inst. HES., 4, 8,11,17, 20, 24, 28, 32. E-V) H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math., 76 (1990), 69-85. F-R) T. Fujita and J. Roberts, Varieties with small secant varieties: extremal case, Amer. J. Math., 103 (1981), 953-976. Fj1) T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794. Fj2) T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 167-178. Fj3) T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, 1990, Cambridge. Fk1) Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, to appear in Geom. Dedicata. Fk2) Y. Fukuma, Master Thesis (in Japanese), (1993). H-N) G. Harder and M. S. Narashimhan, On the cohomology groups of rnoduli spaces of vector bundles on curves, Math. Ann., 212 (1975), 215-248. Ha1) R, Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977. Ha2) R. Hartshorne, Ample subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, 1986, Springer-Verlag. Hi) H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math., 79 (1964), 109-326. Ii1) S. Iitaka, On D-dimension of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373. Ii2) S. Iitaka, Algebraic Geometry, Graduate Texts in Math., 76, Springer-Verlag, New York, Heidelberg, Berlin, 1982. Io) P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc., 99 (1986), 457-472. KMM) Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 283-360. Ka1) Y. Kawamata, Characterization of Abelian varieties, Compositio Math., 43 (1981), 253-276. Ka2) Y. Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., 66 (1982), 59-71. L-P) A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math., 352 (1984), 15-23. Mh) K. Maehara, The weak 1-positivity of direct image sheaves, J. Reine Angew. Math., 364 (1986), 112-129. Mo) S. Mori, Classification of higher-dimensional varieties, in Algebraic Geometry, Bowdoin 1985, Proc. Sympos. Pure Math., 46 (1987), 269-331. Mu) D. Mumford, Algebraic Geometry I Complex projective varieties, 1970, Springer-Verlag. O) K. Ohno, Some inequalities for minimal fibrations of surfaces of general types over curves, J. Math. Soc. Japan, 44 (1992), 643-666. U) K. Ueno, Classification Theory of Algebraic Varieties, Lecture Notes in Math., 439, 1975, Springer-Verlag. V1) E. Viehweg, Rational singularity of higher dimensional schemes, Proc. Amer. Math. Soc., 63 (1977), 6-8. V2) E. Viehweg, Klassifikationstheorie algebraischer varietäten der dimension drei, Compositio Math., 41 (1980), 361-400. V3) E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Adv. Stud. Pure Math., 1 (1983), 329-353.
Right : [B-G] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math., 12 (1971), 112-117. [BPV] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, 1984, Springer-Verlag. [EGA] J. Dieudonné and A. Grothendieck, Eléments de Géométrie Algébrique, Publ. Math. Inst. HES., 4, 8, 11, 17, 20, 24, 28, 32. [E-V] H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math., 76 (1990), 69-85. [F-R] T. Fujita and J. Roberts, Varieties with small secant varieties: extremal case, Amer. J. Math., 103 (1981), 953-976. [Fj1] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794. [Fj2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 167-178. [Fj3] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, 1990, Cambridge. [Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, to appear in Geom. Dedicata. [Fk2] Y. Fukuma, Master Thesis (in Japanese), (1993). [H-N] G. Harder and M. S. Narashimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212 (1975), 215-248. [Ha1] R, Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977. [Ha2] R. Hartshorne, Ample subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, 1986, Springer-Verlag. [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math., 79 (1964), 109-326. [Ii1] S. Iitaka, On D-dimension of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373. [Ii2] S. Iitaka, Algebraic Geometry, Graduate Texts in Math., 76, Springer-Verlag, New York, Heidelberg, Berlin, 1982. [Io] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc., 99 (1986), 457-472. [KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 283-360. [Ka1] Y. Kawamata, Characterization of Abelian varieties, Compositio Math., 43 (1981), 253-276. [Ka2] Y. Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., 66 (1982), 59-71. [L-P] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math., 352 (1984), 15-23. [Mh] K. Maehara, The weak 1-positivity of direct image sheaves, J. Reine Angew. Math., 364 (1986), 112-129. [Mo] S. Mori, Classification of higher-dimensional varieties, in Algebraic Geometry, Bowdoin 1985, Proc. Sympos. Pure Math., 46 (1987), 269-331. [Mu] D. Mumford, Algebraic Geometry I Complex projective varieties, 1970, Springer-Verlag. [O] K. Ohno, Some inequalities for minimal fibrations of surfaces of general types over curves, J. Math. Soc. Japan, 44 (1992), 643-666. [U] K. Ueno, Classification Theory of Algebraic Varieties, Lecture Notes in Math., 439, 1975, Springer-Verlag. [V1] E. Viehweg, Rational singularity of higher dimensional schemes, Proc. Amer. Math. Soc., 63 (1977), 6-8. [V2] E. Viehweg, Klassifikationstheorie algebraischer varietäten der dimension drei, Compositio Math., 41 (1980), 361-400. [V3] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Adv. Stud. Pure Math., 1 (1983), 329-353.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -