Published: 1997 Received: May 10, 1995Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) K. Kiyohara, Compact Liouville surfaces, J. Math. Soc. Japan, 43 (1991), 555-591. 2) M. Igarashi, K. Kiyohara and K. Sugahara, Noncompact Liouville surfaces, J. Math. Soc. Japan, 45 (1993), 459-479. 3) K. Kiyohara, Global structure of Liouville manifolds, preprint. 4) K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, Geometry of geodesics and related topics, Adv. Stud. Pure Math., 3 (1984), 105-124. 5) A. S. Mishchenko, Integration of geodesic flows on symmetric spaces, Math. Notes, 31 (1982), 132-134. 6) J. Eells and N. Kuiper, Manifolds which are like projective planes, Inst. Hautes Études Sci. Publ. Math., 14 (1962). 7) T. Aubin, Équations du type Monge-Ampere sur la variétés kähleriennes compactes, C.R. Acad. Sci. Paris, 283 (1976), 119-121. 8) S. T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Nat. Acad. Sci. USA., 74 (1977), 1798-1799. 9) B. Y. Chen and K. Ogiue, Some characterizations of complex space forms in terms of Chern classes, Quart. J. Math. Oxford, 26 (1975), 459-464. 10) P. Griffiths and J. Harris, Principles of algebraic geometry, A Wiley-Interscience publication, John Wiley & Sons, New York-Chichester-Brisbane-Toronto.
Right : [1] K. Kiyohara, Compact Liouville surfaces, J. Math. Soc. Japan, 43 (1991), 555-591. [2] M. Igarashi, K. Kiyohara and K. Sugahara, Noncompact Liouville surfaces, J. Math. Soc. Japan, 45 (1993), 459-479. [3] K. Kiyohara, Global structure of Liouville manifolds, preprint. [4] K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, Geometry of geodesics and related topics, Adv. Stud. Pure Math., 3 (1984), 105-124. [5] A. S. Mishchenko, Integration of geodesic flows on symmetric spaces, Math. Notes, 31 (1982), 132-134. [6] J. Eells and N. Kuiper, Manifolds which are like projective planes, Inst. Hautes Études Sci. Publ. Math., 14 (1962). [7] T. Aubin, Équations du type Monge-Ampère sur la variétés kähleriennes compactes, C. R. Acad. Sci. Paris, 283 (1976), 119-121. [8] S. T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Nat. Acad. Sci. USA., 74 (1977), 1798-1799. [9] B. Y. Chen and K. Ogiue, Some characterizations of complex space forms in terms of Chern classes, Quart. J. Math. Oxford, 26 (1975), 459-464. [10] P. Griffiths and J. Harris, Principles of algebraic geometry, A Wiley-Interscience publication, John Wiley & Sons, New York-Chichester-Brisbane-Toronto.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -