Published: 1997 Received: June 07, 1995Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: KEYWORDDetails: Right : finitary processes, finitary shifts, euclidean representation, spectral representation
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts, Ann. Math. Statist., 43 (1972), 1072-1029. 2) M. Binkowska, Weak mixing finitary shifts are Bernouli, Bull. Polish Acad. Sci. Math., 32 (1984), 185-191. 3) M. Binkowska, An example of a weak Bernoulli process which is not finitary, Colloq. Math., 59 (1990), 151-156. 4) M. Binkowska and B. Kaminski, Classification of ergodic finitary shifts, Ann. Sci. Univ. Clermont-Ferrand II. Probab. Appl., 2 (1984), 25-37. 5) A. Heller, On stochastic processes derived from Markov chains, Ann. Math. Statist., 30 (1959), 688-697. 6) J. Kubo, H. Murata and H. Totoki, On the isomorphism problem for endomorphisms of Lebesque spaces I, II, Publs. RIMS, Kyoto Univ., 9 (1974), 285-296. 7) D. S. Ornstein, Ergodic Theory, Radomness and Dynamical Systems, New Haven and London, Yale University Press, (1974). 8) J. B. Robertson, A spectral representation of the states of a measure preserving transformation, Z. Wahrsch. Verw. Gebiete, 27 (1974), 185-194. 9) J. B. Robertson, The mixing properties of certain processes related to Markov chains, Math. Systems Theory, 7 (1973), 39-43.
Right : [1] R. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts, Ann. Math. Statist., 43 (1972), 1072-1029. [2] M. Binkowska, Weak mixing finitary shifts are Bernouli, Bull. Polish Acad. Sci. Math., 32 (1984), 185-191. [3] M. Binkowska, An example of a weak Bernoulli process which is not finitary, Colloq. Math., 59 (1990), 151-156. [4] M. Binkowska and B. Kaminski, Classification of ergodic finitary shifts, Ann. Sci. Univ. Clermont-Ferrand II. Probab. Appl., 2 (1984), 25-37. [5] A. Heller, On stochastic processes derived from Markov chains, Ann. Math. Statist., 30 (1959), 688-697. [6] J. Kubo, H. Murata and H. Totoki, On the isomorphism problem for endomorphisms of Lebesque spaces I, II, Publs. RIMS, Kyoto Univ., 9 (1974), 285-296. [7] D. S. Ornstein, Ergodic Theory, Radomness and Dynamical Systems, New Haven and London, Yale University Press, (1974). [8] J. B. Robertson, A spectral representation of the states of a measure preserving transformation, Z. Wahrsch. Verw. Gebiete, 27 (1974), 185-194. [9] J. B. Robertson, The mixing properties of certain processes related to Markov chains, Math. Systems Theory, 7 (1973), 39-43.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -