Published: 1997 Received: August 22, 1994Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Y. Benoist, Multiplicité un pour les espaces symétriques exponentiels, Mem. Soc. Math. France, 15 (1984), 1-37. 2) P. Bernat et al., Représentations des grouper de Lie résolubles, Dunod, 1972. Serniinvariant vectors 661 3) L. Corwin, F. P. Greenleaf and G. Grélaud, Direct integral decompositions and multiplicities for induced représentations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304 (1987), 549-583. 4) H. Fujiwara, Representation monomiales des groupes de Lie nilpotents, Pacific J. Math., 127 (1987), 329-352. 5) H. Fujiwara and S. Yamagami, Certaines répresentations monomiales d'un groupe de Lie résoluble exponentiel, Adv. Stud. Pure Math., 14 (1988), 153-190. 6) H. Fujiwara, Représentations Monomiales de Groupes de Lie Résolubles Exponentiels, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 61-84. 7) J. Inoue, Monomial representations of certain exponential Lie groups, J. Funkt. Anal., 83 (1989), 121-149. 8) R. Lipsman, The Penney-Fujiwara Plancherel Formula for Symmetric Spaces, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 135-145. 9) R. Lipsman, Induced representations of completely solvable Lie groups, Ann. Scuola Norm. Sup. Pisa, 17 (1990), 127-164. 10) R. Lipsman, The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces, Pacific J. Math., 151 (1991), 265-294. 11) R. Penney, Abstract Plancherel Theorems and a Frobenius Reciprocity Theorem, J. Funct. Anal., 18 (1975), 177-190.
Right : [1] Y. Benoist, Multiplicité un pour les espaces symétriques exponentiels, Mem. Soc. Math. France, 15 (1984), 1-37. [2] P. Bernat et al., Représentations des grouper de Lie résolubles, Dunod, 1972. [3] L. Corwin, F. P. Greenleaf and G. Grélaud, Direct integral decompositions and multiplicities for induced représentations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304 (1987), 549-583. [4] H. Fujiwara, Représentation monomiales des groupes de Lie nilpotents, Pacific J. Math., 127 (1987), 329-352. [5] H. Fujiwara and S. Yamagami, Certaines représentations monomiales d'un groupe de Lie résoluble exponentiel, Adv. Stud. Pure Math., 14 (1988), 153-190. [6] H. Fujiwara, Représentations Monomiales de Groupes de Lie Résolubles Exponentiels, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 61-84. [7] J. Inoue, Monomial representations of certain exponential Lie groups, J. Funkt. Anal., 83 (1989), 121-149. [8] R. Lipsman, The Penney-Fujiwara Plancherel Formula for Symmetric Spaces, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 135-145. [9] R. Lipsman, Induced representations of completely solvable Lie groups, Ann. Scuola Norm. Sup. Pisa, 17 (1990), 127-164. [10] R. Lipsman, The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces, Pacific J. Math., 151 (1991), 265-294. [11] R. Penney, Abstract Plancherel Theorems and a Frobenius Reciprocity Theorem, J. Funct. Anal., 18 (1975), 177-190.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -