Published: 1997 Received: August 07, 1995Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation I, J. Reine Angew. Math., 260 (1973), 47-83. Smooth plane curves with one plane at infinity 687 2) S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation II, J. Reine Angew. Math., 261 (1973), 29-54. 3) S. S. Abhyankar and T. Moh, Embeddings of line in the plane, J. Reine Angew. Math., 276 (1975), 148-166. 4) N. A'Campo and M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math., 33 (1996), 1003-1033. 5) P. Jaworski, Normal forms and bases of local rings of irreducible germs of functions of two variables, J. Soviet Math., 50 (1990), 1350-1364. 6) J. Milnor, Singular Points of Complex Hypersurface, Annals Math. Studies, vol. 61, Princeton Univ. Press, Princeton, 1968. 7) M. Miyanishi, Minimization of the embeddings of the curves into the affine plane, J. Math. Kyoto Univ., 36 (1996), 311-329. 8) T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Soc., 44 (1974), 22-24. 9) W. D. Neumann, Complex algebraic curves via their links at infinity, Invent. Math., 98 (1989), 445-489. 10) T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin-Heidelberg-New York, 1987. 11) M. Oka, Polynomial normal form of a plane curve with a given weight sequence, Chinese Quart. J. Math., 10, no. 4 (1995), 53-61. 12) M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algebriques de l'espace C2, Journal of Math. Soc. Japan, 26 (1974), 241-257. 13) E.W.v. Tschirnhausen, Acta eruditorum, Leiptiz, 1683.
Right : [1] S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation I, J. Reine Angew. Math., 260 (1973), 47-83. [2] S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation II, J. Reine Angew. Math., 261 (1973), 29-54. [3] S. S. Abhyankar and T. Moh, Embeddings of line in the plane, J. Reine Angew. Math., 276 (1975), 148-166. [4] N. A'Campo and M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math., 33 (1996), 1003-1033. [5] P. Jaworski, Normal forms and bases of local rings of irreducible germs of functions of two variables, J. Soviet Math., 50 (1990), 1350-1364. [6] J. Milnor, Singular Points of Complex Hypersurface, Annals Math. Studies, vol. 61, Princeton Univ. Press, Princeton, 1968. [7] M. Miyanishi, Minimization of the embeddings of the curves into the affine plane, J. Math. Kyoto Univ., 36 (1996), 311-329. [8] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Soc., 44 (1974), 22-24. [9] W. D. Neumann, Complex algebraic curves via their links at infinity, Invent. Math., 98 (1989), 445-489. [10] T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin-Heidelberg-New York, 1987. [11] M. Oka, Polynomial normal form of a plane curve with a given weight sequence, Chinese Quart. J. Math., 10, no. 4 (1995), 53-61. [12] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace C2, Journal of Math. Soc. Japan, 26 (1974), 241-257. [13] E. W. v. Tschirnhausen, Acta eruditorum, Leiptiz, 1683.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -