Published: 1953 Received: January 23, 1953Available on J-STAGE: August 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: August 29, 2006Reason for correction: -Correction: CITATIONDetails: Right : [1] Y. Akizuki, Theorems of Bertini on linear systems, Jour. Math. Soc. Jap., vol. 3, 1951…[A] [2] W. L. Chow, On the defining field of a divisor in an algebraic variety, Proc. Amer. Math. Soc. vol. 1, No. 6, 1950…[C-1] [3] W. L. Chow, Algebraic systems of positive cycles in an algcbraic variety, Amer. Jour. vol. 72, 1950…[C-2] [4] W. L. -v. d. Waerden, Zur algebraischen Geometrie IX, Math. Ann. 113…[C-W] [5] J. Igusa, On the Picard Varieties attached to algebraic Varieties, Amer. Jour. Math. vol. 74, 1952…[I] [6] K. Kodaira, The theorem of Riemann-Roch on compact analytic surfaces, Amer. Jour. Math. 73, 1951…[K] [7] T. Matsusaka, The theorem of Bertini on linear systems in modular flelds, Mem. Col. Sci. Kyoto Univ., Ser. A, XXVI, 1951…[M-1] [8] T. Matsusaka, Specializations of cycles an a projective model, Mem. Col. Sci. Kyoto Univ., Ser. A, XXVI, 1951…[M-2] [9] T. Matsusaka, On the algebraic construction of the Picard Variety, Proc. Japan. Acad., vol. 28, 1952…[M-3] [10] T. Matsusaka, On the algebraic construction of the Picard Variety (I), Japan. Jour. Math., vol. 21, 1951…[M-4] [11] T. Matsusaka, On the algebraic construction of the Picard Variety (II), To appear soon in Japan. Jour. Math…[M-5] [12] H. T. Muhly and O. Zariski, Hilbert's characteristic function and the arithmetic genus of an algebraic variety, Trans. Amer. Math. Soc, vol. 69, 1950…[M-Z] [13] Y. Nakai, On the section of an algebraic variety by the generic hyperplane, Mem. Col. Sci., Kyoto Univ. Ser. A. XXVI, 1951…[N] [14] P. Samuel, La notion de multiplicitè en algébre et en geometrie algébrique, thèse, Paris, 1951…[S] [15] F. Severi, Sul teorema di Riemann-Roch e sulle serie continue appartenenti ad una superficie algcbrica, Atti, Accad. Sci. Torino, vol. 40, 1904-1905…[Severi-1] [16] F. Severi, Fondamenti per la geometria sulle varieta algebriche, Rend. Circ. Mat. Palermo, vol. 28, 1909…[Severi-2] [17] B. L. v. d. Waerden, Zur algebraischen Geometrie XIV, Math. Ann. 115, 1935…[v. d. Waerden] [18] A. Weil, Foundations of algebraic Geometry, Amer. Math. Soc. Colloq., vol. 29, 1946…[W-1] [19] A. Weil, Variétés Abéliennes et Courbes Algébriques, Act. Sc, et Ind, no. 1046, 1948…[W-2] [20] A. Weil, Courbes Algébriques et les Variétés qui s'en déduisént, Act. Sc. et Ind. no. 1041, 1948…[W-3] [21] O. Zariski, The theorem of Bertini on the variable singular points of the linear system of varieties, Trans. Amer. Math. Soc. vol. 56, 1944…[Z-1] [22] O. Zariski, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer. Math. Soc. vol. 50, 1941…[Z-2] [23] O. Zariski, Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi, Ann. Math. vol. 55, 1952…[Z-3] [24] O. Zariski, Foundations of a general, theory of birational carrespondences, Trans. Amer. Math. Soc. vol. 53, 1943…[Z-4] [25] O. Zariski, Algebraic surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. III, (5), Berlin, Springer, 1935…[Z-5]
Date of correction: August 29, 2006Reason for correction: -Correction: PDF FILEDetails: -