Published: 1953 Received: February 02, 1953Available on J-STAGE: August 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: August 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G. Azumaya, On maximally central algebras, Nagoya Math. J., 2 (1951), 119-150. 2) G. Azumaya-T. Nakayama, On absolutely uni-serial algebras, Jap. J. Math., 19 (1948), 263-273. 3) J. Dieudonné, La théorie de Galois des anneaux simples et semi-simples, Comment. Math. Helv., 21 (1948), 154-184. 4) N. Jacobson, The radical and semi-simplicity for arbitray rings, Amer. J. Math,, 67 (1945), 300-320. 5) T. Nakayama, Commuter systems in a ring with radical, Duke Math. J., 16 (1949) 331-337. 6) T. Nakayama, Generalized Galois theory for rings with minimum condition, Amer. J. Math., 73 (1951), 1-12. 7) T. Nakayama, Automorphisms of simple, complete primitive, and directly indecomposable rings, Ann. Math., 55 (1952) 538-551. 8) T. Nakayama, Note on double-modules over arbitrary rings, Amer. J. Math., 74 (1952), 645-655. 9) T. Nakayama, Derivation and cohomology in simple and other rings, I, Duke Math. J., 19 (1952), 51-63. 10) T. Nakayama, Galois theory of simple rings, Trans. Amer. Math. Soc. 73 (1952), 276-292.
Right : [1] G. Azumaya, On maximally central algebras, Nagoya Math. J., 2 (1951), 119-150. [2] G. Azumaya-T. Nakayama, On absolutely uni-serial algebras, Jap. J. Math., 19 (1948), 263-273. [3] J. Dieudonné, La théorie de Galois des anneaux simples et semi-simples, Comment. Math. Helv., 21 (1948), 154-184. [4] N. Jacobson, The radical and semi-simplicity for arbitray rings, Amer. J. Math,, 67 (1945), 300-320. [5] T. Nakayama, Commuter systems in a ring with radical, Duke Math. J., 16 (1949) 331-337. [6] T. Nakayama, Generalized Galois theory for rings with minimum condition, Amer. J. Math., 73 (1951), 1-12. [7] T. Nakayama, Automorphisms of simple, complete primitive, and directly indecomposable rings, Ann. Math., 55 (1952) 538-551. [8] T. Nakayama, Note on double-modules over arbitrary rings, Amer. J. Math., 74 (1952), 645-655. [9] T. Nakayama, Derivation and cohomology in simple and other rings, I, Duke Math. J., 19 (1952), 51-63. [10] T. Nakayama, Galois theory of simple rings, Trans. Amer. Math. Soc. 73 (1952), 276-292.
Date of correction: August 29, 2006Reason for correction: -Correction: PDF FILEDetails: -