訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) K. Sato, T. Watanabe, K. Yamamuro and M. Yamazato, Multidimensional process of Ornstein-Uhlenbeck type with nondiagonalizable matrix in linear drift terms, Nagoya Math. J. 141 (1996), 45- 78 2) K. Sato, T. Watanabe and M. Yamazato, Recurrence conditions for multidimensional processes of Ornstein-Uhlenbeck type, J. Math. Soc. Japan 46 (1994), 245-265. 3) K. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, Lecture Notes in Math. (Springer) 1021 (1983), 541-551. 4) K. Sato and M.Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stoch. Proc. Appl. 17 (1984), 73-100. 5) K. Sato and M. Yamazato, Remarks on recurrence criteria for processes of Ornstein-Uhlenbeck type, Lecture Notes in Math. (Springer) 1540 (1993), 329-340. 6) T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Prob. Th. Rel. Fields 85 (1990), 425-447. 7) S. J. Wolfe, On a continuous analogue of the stochastic difference equation Xn=ρXn-1+Bn, Stoch. Proc. Appl. 12 (1982), 301-312.
Right : [1] K. Sato, T. Watanabe, K. Yamamuro and M. Yamazato, Multidimensional process of Ornstein-Uhlenbeck type with nondiagonalizable matrix in linear drift terms, Nagoya Math. J. 141 (1996), 45-78 [2] K. Sato, T. Watanabe and M. Yamazato, Recurrence conditions for multidimensional processes of Ornstein-Uhlenbeck type, J. Math. Soc. Japan 46 (1994), 245-265. [3] K. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, Lecture Notes in Math. (Springer) 1021 (1983), 541-551. [4] K. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stoch. Proc. Appl. 17 (1984), 73-100. [5] K. Sato and M. Yamazato, Remarks on recurrence criteria for processes of Ornstein-Uhlenbeck type, Lecture Notes in Math. (Springer) 1540 (1993), 329-340. [6] T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Prob. Th. Rel. Fields 85 (1990), 425-447. [7] S. J. Wolfe, On a continuous analogue of the stochastic difference equation Xn=ρXn-1+Bn, Stoch. Proc. Appl. 12 (1982), 301-312.