訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) V. Arnold, Equations différentielles ordinaires, Mir, Moscow, 1974. 2) A. Baba, The H∞-wellposedness Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 18, 1994, 101-117. 3) R. Beals, Weighted distribution spaces and pseudodifferential operators, J. d'Analyse Math., 39, 1981, 131-187. 4) S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34, 1994, 319-328. 5) S. Hara, A necessary condition for H∞-well posed Cauchy problem of Schrodinger type equations with variable coefficients, J. Math. Kyoto Univ., 32, 1992, 287-305. 6) W. Ichinose, Sufficient condition on H∞ well posedness for Schrodinger type equations, Comm. Partial Differential Equations, 9, 1984, 33-48. 7) W. Ichinose, The Cauchy problem for Schrödinger type equations with variable coefficients, Osaka J. Math., 24, 1987, 853-886. 8) W. Ichinose, A note on the Cauchy problem for Schrödinger type equations on the Riemann Manifold, Math. Japonica, 35, 1990, 205-213. 9) K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations, Bull. Sc. math., 2e série, 119, 1995. 10) S. Mizohata, On the Cauchy problem, Notes and Reports in Math., 3. 1985, Academic Press. 11) J. Takeuchi, Le problème de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger, III, C.R. Acad. Sci. Paris, 312, Série I, 1991, 341-344. 12) J.T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, 1969, Gordon and Breach Science Publishers.
Right : [1] V. Arnold, Equations différentielles ordinaires, Mir, Moscow, 1974. [2] A. Baba, The H∞-wellposedness Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 18, 1994, 101-117. [3] R. Beals, Weighted distribution spaces and pseudodifferential operators, J. d'Analyse Math., 39, 1981, 131-187. [4] S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34, 1994, 319-328. [5] S. Hara, A necessary condition for H∞-well posed Cauchy problem of Schrödinger type equations with variable coefficients, J. Math. Kyoto Univ., 32, 1992, 287-305. [6] W. Ichinose, Sufficient condition on H∞ well posedness for Schrödinger type equations, Comm. Partial Differential Equations, 9, 1984, 33-48. [7] W. Ichinose, The Cauchy problem for Schrödinger type equations with variable coefficients, Osaka J. Math., 24, 1987, 853-886. [8] W. Ichinose, A note on the Cauchy problem for Schrödinger type equations on the Riemann Manifold, Math. Japonica, 35, 1990, 205-213. [9] K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations, Bull. Sc. math., 2e série, 119, 1995. [10] S. Mizohata, On the Cauchy problem, Notes and Reports in Math., 3. 1985, Academic Press. [11] J. Takeuchi, Le problème de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger, III, C. R. Acad. Sci. Paris, 312, Série I, 1991, 341-344. [12] J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, 1969, Gordon and Breach Science Publishers.