訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Bounded topological orbit equivalence and C*-algebras Right : Bounded topological orbit equivalence and C*-algebras
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) R. Belinskaya, Partitions of Lebesgue space in trajectories defined by ergodic automorphisms, Funct. Anal. Appl. 2 (1968), 4-16. 2) M. Boyle, Topological orbit equivalence and factor maps in symbolic dynamics, Ph.D. Thesis, University of Washington, Seattle (1983). 3) M. Boyle & D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210. 4) T. Giordano, I. Putnam & C. Skau, Topological orbit equivalence and C*-crossed products, J. refine angew. Math. 469 (1995), 51-111. 5) R. Hoegh-Krohn & T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the twodimensional torus, J. reine angew. Math. 328 (1981), 1-8. 6) Y. Katznelson, Lectures on orbit equivalence, Mimeographed notes, Orsay (1980). 7) Y. Katznelson & B. Weiss, The classification of nonsingular actions, revisited, Ergod. Th. & Dynam. Sys. (1991) 11, 333-348. 8) I. Kupka, On two notions of structural stability, J. Diff. Geom. 9 (1974), 639-644. 9) K. Kuratowski, Topology, Vol. II, Academic Press (1968). 10) N. Ormes, Strong orbit realization for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. 11) M. V. Pimsner & D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain crossed product C*-algebras, J. Operator Th. 4 (1980), 93-118. 12) K. Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Math. 76, Amer. Math. Soc. (1990). 13) W. Sierpinski, Un théoreme sur les continus, Tohoku Math. Journ. 13 (1918), 300-303. 14) J. Tomiyama, Invitation to C*-algebras and topological dynamics, World Scientific (1987). 15) J. Tomiyama, Topological full groups and structure of normalizers in transformation group C*-algebras, Pacific J. Math. 173 (1996), 571-583. 16) N. E. Wegge-Olsen, K-theory and C*-algebras, Oxford University Press (1993). 17) H-S Yin, A simple proof of the classification of rational rotation C*-algebras, Proc. AMS 98 (1986), 469-470.
Right : [1] R. Belinskaya, Partitions of Lebesgue space in trajectories defined by ergodic automorphisms, Funct. Anal. Appl. 2 (1968), 4-16. [2] M. Boyle, Topological orbit equivalence and factor maps in symbolic dynamics, Ph. D. Thesis, University of Washington, Seattle (1983). [3] M. Boyle & D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210. [4] T. Giordano, I. Putnam & C. Skau, Topological orbit equivalence and C*-crossed products, J. reine angew. Math. 469 (1995), 51-111. [5] R. Hoegh-Krohn & T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the twodimensional torus, J. reine angew. Math. 328 (1981), 1-8. [6] Y. Katznelson, Lectures on orbit equivalence, Mimeographed notes, Orsay (1980). [7] Y. Katznelson & B. Weiss, The classification of nonsingular actions, revisited, Ergod. Th. & Dynam. Sys. (1991) 11, 333-348. [8] I. Kupka, On two notions of structural stability, J. Diff. Geom. 9 (1974), 639-644. [9] K. Kuratowski, Topology, Vol. II, Academic Press (1968). [10] N. Ormes, Strong orbit realization for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. [11] M. V. Pimsner & D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain crossed product C*-algebras, J. Operator Th. 4 (1980), 93-118. [12] K. Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Math. 76, Amer. Math. Soc. (1990). [13] W. Sierpinski, Un théoreme sur les continus, Tôhoku Math. Journ. 13 (1918), 300-303. [14] J. Tomiyama, Invitation to C*-algebras and topological dynamics, World Scientific (1987). [15] J. Tomiyama, Topological full groups and structure of normalizers in transformation group C*-algebras, Pacific J. Math. 173 (1996), 571-583. [16] N. E. Wegge-Olsen, K-theory and C*-algebras, Oxford University Press (1993). [17] H-S Yin, A simple proof of the classification of rational rotation C*-algebras, Proc. AMS 98 (1986), 469-470.