1) Departmant of Mathematics Graduate School of Science and Technology Chiba University
2) Departmant of Mathematics Faculty of Education Chiba University
訂正後 :
1) Department of Mathematics Graduate School of Science and Technology Chiba University
2) Department of Mathematics Faculty of Education Chiba University
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) H.W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation, Adv. Math. Sci.Appl. 1 (1992), 319-409. 2) J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2 (1991), 233-280. 3) J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems, pp. 19-60, in Degenerate Diffusion, IMA 47, Springer-Verlag, New York, 1993. 4) J.F. Blowey and C.M. Elliott, A phase field model with a double obstacle potential, pp. 1-22, in Motion by Mean Curvature, Walter de Gruyter, Berlin-New York, 1994. 5) J. Carr, M.E. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal. 12 (1984), 317-351. 6) N. Chafee and E.F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974), 17-37. 7) X. Chen and C.M. Elliott, Asymptotics for a parabolic double obstacle problem, Royal Soc. London, Proc. Math. Phys. Sci. Ser. A444 (1994), 429-445. 8) C.M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal. 96 (1986), 339-357. 9) N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl. 188 (1994), 651-679. 10) N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation, pp. 12-22, in “Progress in partial differential equations: the Metz surveys 2”. Pitman Research Notes Math. Ser. vol. 290, 1993. 11) N. Kenmochi and M. Niezgódka, Viscosity approach to modelling non-isothermal diffusive phase separations, Japan J. Indust. Appl. Math. 13 (1996), 135-169. 12) N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, J. Differential Equations 117 (1995), 320-356. 13) O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. 14) W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations, Commun. in P.D.E., 18 (1993), 711-727. 15) R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin, 1988. 16) W. von Wahl, On the Cahn-Hilliard equation u'+Δ2u-Δf(u)=0, Delft Progress Report 10 (1985), 291-310. 17) S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Applicable Anal. 23 (1986), 165-184.
Right : [1] H. W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation, Adv. Math. Sci. Appl. 1 (1992), 319-409. [2] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2 (1991), 233-280. [3] J. F. Blowey and C. M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems, pp. 19-60, in Degenerate Diffusion, IMA 47, Springer-Verlag, New York, 1993. [4] J. F. Blowey and C. M. Elliott, A phase field model with a double obstacle potential, pp. 1-22, in Motion by Mean Curvature, Walter de Gruyter, Berlin-New York, 1994. [5] J. Carr, M. E. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal. 12 (1984), 317-351. [6] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974), 17-37. [7] X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem, Royal Soc. London, Proc. Math. Phys. Sci. Ser. A444 (1994), 429-445. [8] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal. 96 (1986), 339-357. [9] N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl. 188 (1994), 651-679. [10] N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation, pp. 12-22, in “Progress in partial differential equations: the Metz surveys 2”. Pitman Research Notes Math. Ser. vol. 290, 1993. [11] N. Kenmochi and M. Niezgódka, Viscosity approach to modelling non-isothermal diffusive phase separations, Japan J. Indust. Appl. Math. 13 (1996), 135-169. [12] N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, J. Differential Equations 117 (1995), 320-356. [13] O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. [14] W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations, Commun. in P. D. E., 18 (1993), 711-727. [15] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin, 1988. [16] W. von Wahl, On the Cahn-Hilliard equation u'+Δ2u-Δf(u)=0, Delft Progress Report 10 (1985), 291-310. [17] S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Applicable Anal. 23 (1986), 165-184.