Published: 1998 Received: October 14, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : Wenxia Li1), Dongmei XIAO1) Right : Wenxia LI1), Dongmei XIAO1)
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Bedfore, T., Dimension and dynamics of factal recurrent set. J. London Math. Soc., 33 (1986), 89- 100. 2) Dekking, F. M., Recurrent sets. Advances in Math., 44 (1982), 78-104. 3) Falconer, K., Fractal geometry-Mathematical foundation and applications. Chichester: John Wiley & Sopens Ltd., 1990. 4) Falconer, K., Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc., 106 (1989), 543-554. 5) Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. 6) Li, W. X., Separation properties for MW-fractals. to appear in Acta Mathematica Sinica, 41 (1998). 7) Li, W. X., Researches on a class of partially-self-similar sets. Chinese Ann. of Math., 15A (1994), 681- 688. 8) Li, W. X., Generalized recurrent set. Acta Math. Sinica. 39 (1996) 78-88. 9) Mauldin, R. D. & Williams, S. C., Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988) 811-829. 10) Schief, A., Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122 (1994), 111-115. 11) Wen, Z. Y., Wu, L. M., Zhong, H. L., A note on recurrent sets. Chin. Ann. of Math. 15B (1994), 321-326. 12) Wu, M., The Hausdorff dimensions of several kinds of set. Doctoral dissertation, Wuhan University. China, 1993.
Right : [1] Bedfore, T., Dimension and dynamics of factal recurrent set. J. London Math. Soc., 33 (1986), 89-100. [2] Dekking, F. M., Recurrent sets. Advances in Math., 44 (1982), 78-104. [3] Falconer, K., Fractal geometry - Mathematical foundation and applications. Chichester: John Wiley & Sopens Ltd., 1990. [4] Falconer, K., Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc., 106 (1989), 543-554. [5] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. [6] Li, W. X., Separation properties for MW-fractals. to appear in Acta Mathematica Sinica, 41 (1998). [7] Li, W. X., Researches on a class of partially-self-similar sets. Chinese Ann. of Math., 15A (1994), 681- 688. [8] Li, W. X., Generalized recurrent set. Acta Math. Sinica. 39 (1996) 78-88. [9] Mauldin, R. D. & Williams, S. C., Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988) 811-829. [10] Schief, A., Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122 (1994), 111-115. [11] Wen, Z. Y., Wu, L. M., Zhong, H. L., A note on recurrent sets. Chin. Ann. of Math. 15B (1994), 321-326. [12] Wu, M., The Hausdorff dimensions of several kinds of set. Doctoral dissertation, Wuhan University. China, 1993.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -