Published: 1998 Received: May 14, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: ABSTRACTDetails: Wrong : We study the Morava K-theory of the exceptional Lie groups at the prime 2, and of certain projective Lie groups at a variety of primes. §1. Introduction. Right : We study the Morava K-theory of the exceptional Lie groups at the prime 2, and of certain projective Lie groups at a variety of primes.
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : [BB] P. F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology, 3 (1965), 305-336. [Br] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-176. [HS] R. P. Held and U. Suter, On the K-theory of compact Lie groups with finite fundamental group, Quart. J. Maths., 24 (1973), 343-356. [Ho] L. Hodgkin, On the K-theory of Lie groups, Topology, 6 (1967), 1-36. [Hu] J. R. Hunton, On Morava's extraordinary K-theories, Ph.D. thesis, Cambridge, 1989. [Ka1] R. Kane, BP torsion in finite H-spaces, Trans. Amer. Math. Soc., 264 (1981), 473-497. [Ka2] R. Kane, Implications in Morava K-theory, Memoires Amer. Math. Soc., 340 (1986). [Mi] M. Mimura, Homotopy theory of Lie groups, in: Handbook of Algebraic Topology, ed. by I. M. James, Elsevier, (1995), 951-991. ?818 J. HUNTON, M. MIMURA, T. NISHIMOTO, and B. SCHUSTER [Rao1] V. K. Rao, On the Morava K-theories of SO(2n+1), Proc. Amer. Math. Soc., 108 (1990), 1031- 1038. [Rao2] V. K. Rao, Spin(n) is not homotopy nilpotent for n≥7, Topology, 32 (1993), 239-249. [Rav] D. C. Ravenel, Localization with respect to certain periodic cohomology theories, Amer. J. Math., 106 (1984), 351-414. [Y1]N. Yagita, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., 22 (1980), 423- 438. [Y2] N. Yagita, On mod odd prime Brown Peterson cohomology groups of exceptional Lie groups, J. Math. Soc. Japan, 34 (1982), 293-305. [Y3] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc., 25 (1993), 481-486.
Right : [BB] P. F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology, 3 (1965), 305-336. [Br] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-176. [HS] R. P. Held and U. Suter, On the K-theory of compact Lie groups with finite fundamental group, Quart. J. Maths., 24 (1973), 343-356. [Ho] L. Hodgkin, On the K-theory of Lie groups, Topology, 6 (1967), 1-36. [Hu] J. R. Hunton, On Morava's extraordinary K-theories, Ph. D. thesis, Cambridge, 1989. [Ka1] R. Kane, BP torsion in finite H-spaces, Trans. Amer. Math. Soc., 264 (1981), 473-497. [Ka2] R. Kane, Implications in Morava K-theory, Memoires Amer. Math. Soc., 340 (1986). [Mi] M. Mimura, Homotopy theory of Lie groups, in: Handbook of Algebraic Topology, ed. by I. M. James, Elsevier, (1995), 951-991. [Rao1] V. K. Rao, On the Morava K-theories of SO (2n+1), Proc. Amer. Math. Soc., 108 (1990), 1031- 1038. [Rao2] V. K. Rao, Spin (n) is not homotopy nilpotent for n≥7, Topology, 32 (1993), 239-249. [Rav] D. C. Ravenel, Localization with respect to certain periodic cohomology theories, Amer. J. Math., 106 (1984), 351-414. [Y1]N. Yagita, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., 22 (1980), 423-438. [Y2] N. Yagita, On mod odd prime Brown Peterson cohomology groups of exceptional Lie groups, J. Math. Soc. Japan, 34 (1982), 293-305. [Y3] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc., 25 (1993), 481-486.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -