Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Growth property and slowly increasing behaviour of singular solutions of linear partial differential equations in the complex domain
Dedicated to Professor Daisuke Fujiwara on his sixtieth birthday
Sunao OUCHI
著者情報
ジャーナル フリー

2000 年 52 巻 4 号 p. 767-792

詳細
抄録
Consider a linear partial differential equation in Cd+1 P(z, ∂)u(z)=f(z), where u(z) and f(z) admit singularities on the surface {z0=0}. We assume that |f(z)|≤ A|z0|c in some sectorial region with respect to z0. We can give an exponent γ*>0 for each operator P(z, ∂) and show for those satisfying some conditions that if ∀ε>0∃ Cε such that |u(z)|≤ Cεexp(ε|z0|^{-γ*}) in the sectorial region, then |u(z)|≤ C|z0|^{c^{'}} for some constants c^{'} and C.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top