Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Removable singularities of holomorphic solutions of linear partial differential equations
Katsuju IGARI
著者情報
ジャーナル フリー

2004 年 56 巻 1 号 p. 87-113

詳細
抄録
In a complex domain V⊂ \bm{C}n, let P be a linear holomorphic partial differential operator and K be its characteristic hypersurface. When the localization of P at K is a Fuchsian operator having a non-negative integral characteristic index, it is proved, under some conditions, that every holomorphic solution to Pu=0 in V\backslash K has a holomorphic extension in V. Besides, it is applied to the propagation of singularities for equations with non-involutive double characteristics.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top