Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The finite group action and the equivariant determinant of elliptic operators
Kenji TSUBOI
著者情報
ジャーナル フリー

2005 年 57 巻 1 号 p. 95-113

詳細
抄録
If a closed oriented manifold admits an action of a finite group G, he equivariant determinant of a G-equivariant elliptic operator on the manifold defines a group homomorphism from G to S^1. The equivariant determinant is obtained from the fixed point data of the action by using the Atiyah-Singer index theorem, and the fact that the equivariant determinant is a group homomorphism imposes conditions on the fixed point data. In this paper, using the equivariant determinant, we introduce an obstruction to the existence of a finite group action on the manifold, which is obtained directly from the relation among the generators of the finite group.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top