Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
LETTERS
Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8.H2O) and its anhydrous form (kokchetavite)
Masami KANZAKIXianyu XUEJulien AMALBERTIQian ZHANG
Author information
JOURNAL FREE ACCESS

2012 Volume 107 Issue 2 Pages 114-119

Details
Abstract

To facilitate identification of high-pressure K-cymrite (KAlSi3O8·H2O) phase and its anhydrous form (kokchetavite) in natural rocks, we have synthesized both phases and have characterized them by micro-Raman and NMR spectroscopy. K-cymrite was synthesized at 5 GPa and 800 °C. Kokchetavite was obtained by dehydrating K-cymrite at ambient pressure and 550 °C. The 1H MAS and 1H-29Si CP MAS NMR spectra of K-cymrite are consistent with the reported crystal structure that contains H2O molecules and has a disordered Si-Al distribution. The Raman spectra obtained under ambient conditions for K-cymrite (and kokchetavite) contain major peaks at 114.0 (109.1), 380.2 (390.0) and 832.5 (835.8) cm-1. For K-cymrite, OH stretching vibration is also observed at 3541 cm-1 with a shoulder at 3623 cm-1. The Raman spectrum for kokchetavite is consistent with that previously reported for a natural sample found as inclusions in clinopyroxenes and garnets in a garnet-pyroxene rock. However, the data for K-cymrite are inconsistent with the Raman features of a previously reported “relict K-cymrite in K-feldspar” from an eclogite. Pressure- and temperature-dependencies of the Raman shifts for the strongest peak of both phases are also reported.

Content from these authors
Previous article Next article
feedback
Top