2020 Volume 115 Issue 3 Pages 236-246
The genesis of CLIPPIR diamonds (Cullinan–like, large, inclusion–poor, pure, irregular, and resorbed) have attracted much interest due to their possible crystallization from metal melt in deep horizons of the earth’s mantle. These diamonds usually show a pronounced resorption and irregular morphology. The present paper reports new experimental data on the dissolution of diamond crystals at high P–T parameters in Fe–S melt containing large amounts of silicate components (5–20 wt%). The experiments were performed using a split–sphere multi–anvil apparatus (BARS) at a pressure of 4 GPa and a temperature of 1450 °C. The samples consisted of natural diamond crystals placed in mixtures of Fe, S, and kimberlite. Wide variations in dissolution rates of diamond crystals were obtained. The absence of diamond dissolution in a heterogeneous medium indicates that the amount of solid silicate phases present in metal melt plays a role in the preservation of diamonds. This study demonstrated how diamonds can be stored in natural environments due to the heterogeneity of the medium composition which could insulate diamonds from the metal–sulphide melt. The obtained results improve our understanding of processes that lead to preservation of CLIPPIR diamonds in the deep mantle.