Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Article: Special Edition on Typhoons in 2018-2019
Intensity and Structural Changes of Numerically Simulated Typhoon Faxai (1915) before Landfall
Yoshiaki MIYAMOTOHironori FUDEYASUAkiyoshi WADA
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 100 Issue 1 Pages 181-196

Details
Abstract

A numerical simulation of Typhoon Faxai (1915), which made landfall with a central pressure of 960 hPa in the Kanto region of Japan, was conducted using a nonhydrostatic numerical model with a 1-km grid spacing. Faxai sustained a symmetric structure until the landfall and caused severe damage due to strong winds. The simulation successfully simulated the realistic track and intensity of Faxai for 48 h around landfall. The simulated intensity was strong until the time of landfall, and the spatial size of the vortex was small. The structure of the simulated Faxai, identified as having an axisymmetric flow field and eyewall, was similar to that of a welldeveloped tropical cyclone (TC) in the tropics. Around the TC center, the surface latent heat flux was over 300 W m−2 until landfall, and the vertical wind shear was less than 9 m s−1 between the 1.5- and 12.0-km altitudes, which is relatively weak at midlatitudes. The maximum potential intensity (MPI) was calculated using environmental parameters around the simulated TC. The simulated and best track TC intensities exceeded the MPI for approximately 12 h before landfall, that is, the TC was in a superintense state. The superintensity was mainly caused by the presence of supergradient wind, which, in turn, resulted from the strong intensity and axisymmetric structure of the typhoon. The simulated TC satisfies the assumptions for the formulation of the MPI during the quasi-steady state, except for the gradient wind balance, implying that the structure of a TC is similar to that of a developed TC in the tropics. The present analyses suggest that the strong intensity of Faxai results from favorable environmental conditions and vortex structure.

Content from these authors

© The Author(s) 2022. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top