Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Notes and Correspondence: Special Edition on the Frontier of Atmospheric Science with High-Performance Computing
Flux Adjustment on Seasonal-Scale Sea Surface Temperature Drift in NICOCO
Ryusuke MASUNAGATomoki MIYAKAWATakao KAWASAKIHisashi YASHIRO
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 101 Issue 3 Pages 175-189

Details
Abstract

High-resolution atmosphere–ocean coupled models are the primary tool for subseasonal to seasonal-scale (S2S) prediction. However, seasonal-scale sea surface temperature (SST) drift is inevitable due to the imbalance between the model components, which may deteriorate the prediction skill. Here, we investigate the performance of a simple flux adjustment method specifically designed to suppress seasonal-scale SST drift through case studies. The Nonhydrostatic Icosahedral Atmospheric Model (NICAM)–Center for Climate System Research Ocean Component Model (COCO) coupled weather/climate model, referred to as NICOCO, was used for wintertime 40-day integrations with a horizontal resolution of 14 km for the atmosphere and 0.25° for the ocean components. The coupled model with no flux adjustment suffers SST drift of typically −1.5–2°C in 40 days over the tropical, subtropical, and Antarctic regions. Simple flux adjustment was found to sufficiently suppress the SST drift. Nevertheless, the lead–lag correlation analysis revealed that air-sea interactions are likely to be appropriately represented under flux adjustment. Thus, high-resolution coupled models with flux adjustment can significantly improve S2S prediction.

Content from these authors

©The Author(s) 2023. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
https://creativecommons.org/licenses/by/4.0
Next article
feedback
Top