Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
Papers
A One-dimensional Time Dependent Cloud Model
Shu-Hua CHENWen-Yih SUN
Author information
JOURNALS FREE ACCESS

2002 Volume 80 Issue 1 Pages 99-118

Details
Abstract

A one-dimensional prognostic cloud model has been developed for possible use in a Cumulus Parameterization Scheme (CPS). In this model, the nonhydrostatic pressure, entrainment, cloud microphysics, lateral eddy mixing and vertical eddy mixing are included, and their effects are discussed.
The inclusion of the nonhydrostatic pressure can (1) weaken vertical velocities, (2) help the cloud develop sooner, (3) help maintain a longer mature stage, (4) produce a stronger overshooting cooling, and (5) approximately double the precipitation amount. The pressure perturbation consists of buoyancy pressure and dynamic pressure, and the simulation results show that both of them are important.
We have compared our simulation results with those from Ogura and Takahashi’s one-dimensional cloud model, and those from the three-dimensional Weather Research and Forecast (WRF) model. Our model, including detailed cloud microphysics, generates stronger maximum vertical velocity than Ogura and Takahashi's results. Furthermore, the results illustrate that this one-dimensional model is capable of reproducing the major features of a convective cloud that are produced by the three-dimensional model when there is no ambient wind shear.

Information related to the author
© 2002 by Meteorological Society of Japan
Previous article Next article
feedback
Top