Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
Articles
True Color Imagery Rendering for Himawari-8 with a Color Reproduction Approach Based on the CIE XYZ Color System
Hidehiko MURATAKotaro SAITOHYasuhiko SUMIDA
Author information
JOURNALS FREE ACCESS

2018 Volume 96B Pages 211-238

Details
Abstract

 The combination of three visible bands of the Advanced Himawari Imager (AHI) aboard Japan Meteorological Agency's (JMA) new-generation Himawari-8 and Himawari-9 geostationary meteorological satellites enables the production of true color imagery. True color is intuitively understandable to human analysts and beneficial for monitoring surface and atmospheric features. It is particularly useful when applied to frequent observations from a geostationary platform. In this article, we report on an application of a color reproduction approach based on the International Commission on Illumination (CIE) 1931 XYZ color system to imagery rendering. This approach allows the consideration of primary color (RGB) differences among satellite and output devices, which in turn cause differences in the colors reproduced. The RGB signals observed by the AHI are converted to XYZ tristimulus values, which are independent of the devices themselves, and then reconverted to RGB signals for output devices via the application of 3 × 3 conversion matrices. This article also covers an objective technique for the evaluation of the accuracy of XYZ values. The evaluation indicated that the combination of AHI native RGB bands is suboptimal for obtaining XYZ values as is, whereas a combination in which the green band is replaced by a pseudo band with a central wavelength of around 0.555 μm is optimal. The pseudo band is generated via regression with existing visible and near-infrared bands as predictor variables. The imagery produced using this approach was termed True Color Reproduction (TCR). This approach is applicable to other satellites that have several bands in the visible to near-infrared spectral range, and it has the potential for development toward the production of standardized sensor-independent true color imagery.

Information related to the author
© 2018 The Author(s) CC-BY 4.0 (Before 2018: Copyright © Meteorological Society of Japan)
Previous article Next article
feedback
Top