気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Articles: Special Edition on Global Precipitation Measurement (GPM): 5th Anniversary
The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar
Jingyu WANGRobert. A. HOUZE, Jr.Jiwen FANStacy. R. BRODZIKZhe FENGJoseph C. HARDIN
著者情報
ジャーナル フリー
電子付録

2019 年 97 巻 6 号 p. 1059-1073

詳細
抄録

 The Global Precipitation Measurement (GPM) core observatory satellite launched in 2014 features more extended latitudinal coverage (65°S-65°N) than its predecessor Tropical Rainfall Measuring Mission (TRMM, 35°S-35°N). The Ku-band radar onboard the GPM is known to be capable of characterizing the 3D structure of deep convection globally. In this study, the GPM's capability for detecting mesoscale convective systems (MCSs) is evaluated. Extreme convective echoes seen by GPM are compared against an MCS database that tracks convective entities over the contiguous US. The tracking is based on a geostationary satellite and ground-based Next Generation Radar (NEXRAD) network data obtained during the 2014-2016 warm seasons. Results indicate that more than 70 % of the GPM-detected deep–wide convective core (DWC) and wide convective core (WCC) objects are part of NEXRAD identified MCSs, indicating that GPM-classified DWCs and WCCs correlate well with typical MCSs containing large convective features. By applying this method to the rest of the world, a global view of MCS distribution is obtained. This work reveals GPM's potential in MCS detection at the global scale, particularly over remote regions without a dense observation network.

著者関連情報
© The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
次の記事
feedback
Top