気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A Simple Multivariable Maximum Covariance Analysis Method
KURODA YuhjiKODERA Kunihiko
著者情報
ジャーナル フリー 早期公開

論文ID: 2017-009

この記事には本公開記事があります。
詳細
抄録
 This paper proposes a new simple method of multivariable maximum covariance analysis (MMCA), for extracting common variability from multiple (more than two) datasets, that expands the singular value decomposition analysis method. The method is based on iteration of a recurrence equation derived by a dual relationship between pattern vectors and time coefficients. Two approaches of the method are proposed, one using the extreme of a summation of covariances (sum MMCA) and the other using the product of covariances (product MMCA). Both approaches are demonstrated by successfully extracting the variability related to the Arctic Oscillation from three monthly-mean meteorological datasets. The method is useful because it is easily programmed and is computationally inexpensive. The method can be applied to an arbitrary number of datasets, although a complete set of the product MMCA method cannot apply to an even number of datasets.
著者関連情報
© 2017 by Meteorological Society of Japan
feedback
Top