Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

This article has now been updated. Please use the final version.

Relationship between Sea Surface Temperature and Rainfall in the Philippines during the Asian Summer Monsoon
Hiroshi G. TAKAHASHIJulie Mae B. DADO
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2018-031

Details
Abstract

 We offer a new perspective on a relationship between sea surface temperature (SST) over the windward region of the Philippines and rainfall in the western Philippines during the Asian summer monsoon season, which has been known as the negative correlation, using observational daily SST, rainfall, and atmospheric circulation datasets. This study focuses on the local SST effect rather than the remote effect. A warmer local SST results in greater rainfall over the western Philippines under similar monsoon westerlies conditions, particularly during moderate and relatively stronger monsoon regimes. This result is obtained after selecting only the moderate or relatively stronger monsoon days, because the positive effect of SST on rainfall is masked by the apparent negative correlation between SST and rainfall. The warmer SSTs being associated with less rainfall correspond to weaker cooling by weaker monsoon westerlies and the cooler SSTs being associated with more rainfall correspond to stronger cooling by stronger monsoon westerlies. The cooler SSTs are the result of stronger monsoon cooling and are not the cause of the greater rainfall, which is the apparent statistical relationship. This also implies that the monsoon westerly is the primary driver of the variation in rainfall in this region. We conclude that the local SST makes a positive contribution toward rainfall, although it does not primarily control rainfall. This conclusion can be applicable to coastal regions where, climatologically, rainfall is controlled by winds from the ocean.

Content from these authors
© 2018 The Author(s) CC-BY 4.0 (Before 2018: Copyright © Meteorological Society of Japan)
feedback
Top