気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

2版
Statistical Intercomparison of Similarity Metrics in Sea Level Pressure Pattern Classification
SATO TakutoKUSAKA Hiroyuki
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2021-047

この記事には本公開記事があります。
詳細
抄録

 In this study, we compare the accuracy of five representative similarity metrics in extracting sea level pressure (SLP) patterns for accurate weather chart classification: correlation coefficient, Euclidean distance (EUC), S1-score (S1), structural similarity (SSIM), and average hash. We use a large amount of teacher data to statistically evaluate the accuracy of each metric. The evaluation results reveal that S1 and SSIM have the highest accuracy in terms of both average and maximum scores. Their accuracy does not change even when non-ideal data are used as the teacher data. In addition, S1 and SSIM can reproduce the subjective resemblance between two maps better than EUC. However, EUC reproduces the central position of the signal in a sample case. This study can serve as a reference for identifying the most useful similarity metric for the classification of SLP patterns, especially when using non-ideal teacher data.

著者関連情報
© The Author(s) 2021. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top