気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Validation of GSMaP Products for a Heavy Rainfall Event over Complex Terrain in Mongolia Captured by the GPM Core Observatory
KOMATSU Kensuke K.IIJIMA YoshihiroKANEKO YukiOYUNBAATAR Dambaravjaa
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2021-048

この記事には本公開記事があります。
詳細
抄録

 This paper focuses on the uncertainty of summer precipitation estimations produced by Global Satellite Mapping of Precipitation (GSMaP) over Mongolia, a region that has complex terrain and sparse weather observation networks. We first compared average summer precipitation over Mongolian territory as reported by several precipitation products. Although the interannual variability of the product was comparable, the amount of recorded precipitation differed among the various products. The rain-gauge-based analysis reported the lowest amount of precipitation, while the satellite-based GSMaP_MVK reported the highest amount. Our results represent a first estimate of the characteristic differences among the various precipitation-monitoring products, including GPM-based products, as they relate to climatic and hydro-meteorological assessments in Mongolia. We then made a detailed comparison using a case study in which a heavy rainfall event was captured by the Global Precipitation Measurement (GPM) mission's core observatory near Ulaanbaatar in July 2016. In this case, gauged and ungauged GSMaP estimates of the precipitation over the mountain area differed substantially between algorithm versions 6 and 7. An intercomparison of atmospheric numerical modeling, the GPM core observatory, and rain gauge observation showed that the rain gauge calibration of GSMaP effectively moderates the large error of the ungauged GSMaP data. The source of the significant ungauged GSMaP error is likely to be the rain rate estimates in version 7 of the algorithm. However, GSMaP gauge-calibrated estimates of the precipitation over mountainous areas may be affected by a potential underestimation of gauge analysis due to the missing localized precipitation occurring in the large gaps of the routine observation network. We expect that these findings will be helpful for developers seeking to further improve the GSMaP algorithm.

著者関連情報
© The Author(s) 2021. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top