気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

JMA Operational Hourly Hybrid 3DVar with Singular Vector-Based Mesoscale Ensemble Prediction System
Sho YOKOTATakahiro BANNOMasanori OIGAWAGinga AKIMOTOKohei KAWANOYasutaka IKUTA
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2024-006

この記事には本公開記事があります。
詳細
抄録

 This study hybridizes the background error covariance (BEC) of the hourly atmospheric three-dimensional variational data assimilation (3DVar) in Local Analysis (LA) operated at Japan Meteorological Agency using the flow-dependent BEC derived from the singular vector-based Mesoscale Ensemble Prediction System (MEPS) and the static BEC. The impact of introducing the hybrid BEC into the 3DVar is examined, along with its sensitivities to various factors like the ensemble size that is augmented by using lagged ensemble forecasts, the weight given to the ensemble-based component of BEC, the localization scales, and use (or not) of the cross-variable correlation. This hybrid 3DVar system can be operated with small additional computational cost because it has no coupling with another ensemble data assimilation system. In sensitivity experiments, this hybrid 3DVar is shown to yield smaller forecast root-mean square errors than the pure 3DVar, especially for surface variables. Moreover, the hybrid 3DVar shows better equitable threat score for strong precipitation. These improvements were greater in the experiments with larger ensemble sizes that were increased by using lagged ensemble forecasts because of the reduced sampling errors in the ensemble-based BEC. These results were sensitive to the weight given to the ensemble-based BEC and the horizontal localization scale, whose optimal values were found to be approximately 0.5 and 100 km, respectively. The longer vertical correlation scale and the cross-variable correlation were also found important to create dynamically-balanced analysis, which is especially true for heavy rain cases.

著者関連情報
© The Author(s) 2024. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top