気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Development of a Temperature Prediction Method Combining Deep Neural Networks and a Kalman Filter
INOUE TakuyaSEKIYAMA Tsuyoshi ThomasKUDO Atsushi
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2024-020

この記事には本公開記事があります。
詳細
抄録

 Numerical weather forecast models have biases caused by insufficient grid resolution and incomplete physical processes, especially near the land surface. Therefore, the Japan Meteorological Agency (JMA) has been operationally post-processing the forecast model outputs to correct biases. The operational post-processing method uses a Kalman filter (KF) algorithm for surface temperature prediction. Recent reports have shown that deep convolutional neural networks (CNNs) outperform the JMA operational method in correcting temperature forecast biases. This study combined the CNN-based bias correction scheme with the JMA operational KF algorithm. We expected that the combination of CNNs and a KF would improve the post-processing performance, as the CNNs modify large horizontal structures, and then, the KF corrects minor spatiotemporal deviations. As expected, we confirmed that the combination outperformed both CNNs and the KF alone. This study demonstrated the advantages of the new method in correcting coastal fronts, heat waves, and radiative cooling biases.

著者関連情報
© The Author(s) 2024. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top