自然言語処理
Online ISSN : 2185-8314
Print ISSN : 1340-7619
ISSN-L : 1340-7619
一般論文
Learning to Select, Track, and Generate for Data-to-Text
Hayate IsoYui UeharaTatsuya IshigakiHiroshi NojiEiji AramakiIchiro KobayashiYusuke MiyaoNaoaki OkazakiHiroya Takamura
著者情報
ジャーナル フリー

2020 年 27 巻 3 号 p. 599-626

詳細
抄録

We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and remembers which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. In addition, we also explore the effectiveness of the writer information for generation. Experimental results show that our model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.

著者関連情報
© 2020 The Association for Natural Language Processing
前の記事 次の記事
feedback
Top